34 research outputs found

    The Pairing Mechanism in HTSC investigated by Electronic Raman Scattering

    Full text link
    By means of electronic Raman scattering we investigated the symmetry of the energy gap Delta(k), its temperature dependence and its variation with doping of well characterized Bi2Sr2CaCu2O8+delta single crystals. The oxygen content delta was varied between the under- and the overdoped regime by subsequently annealing the same single crystal in Ar and O2, respectively. The symmetry analysis of the polarized electronic Raman scattering is consistent with a d_x^2-y^2-wave symmetry of the energy gap in both regimes. The gap ratio 2Delta_max/k_BT_c and its temperature dependence changes with doping similar to predictions of theories based on paramagnon coupling.Comment: 3 pages, LaTeX, 2 ps figures available on request to [email protected]

    Pairing in Cu-O Models: Clues of Joint Electron-Phonon and Electron-Electron Interactions

    Full text link
    We discuss a many-electron Hamiltonian with Hubbard-like repulsive interaction and linear coupling to the phonon branches, having the Cu-O plane of the superconducting cuprates as a paradigm. A canonical transformation extracts an effective two-body problem from the many-body theory. As a prototype system we study the \cu cluster, which yields electronic pairing in the Hubbard model; moreover, a standard treatment of the Jahn-Teller effect predicts distortions that destroy electronic pairing. Remarkably, calculations that keep all the electronic spectrum into account show that vibrations are likely to be synergic with electronic pairing, if the coupling to half-breathing modes predominates, as experiments suggest.Comment: 4 pages, 3 figures, accepted by Phys. Rev.

    Stability of condensate in superconductors

    Full text link
    According to the BCS theory the superconducting condensate develops in a single quantum mode and no Cooper pairs out of the condensate are assumed. Here we discuss a mechanism by which the successful mode inhibits condensation in neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is shown that condensed and noncondensed Cooper pairs are separated by an energy gap which is smaller than the superconducting gap but large enough to prevent nucleation in all other modes and to eliminate effects of noncondensed Cooper pairs on properties of superconductors. Our result thus justifies basic assumptions of the BCS theory and confirms that the BCS condensate is stable with respect to two-particle excitations

    Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments

    Full text link
    We analyze single-particle electronic and two-particle magnetic properties of the Hubbard model in the underdoped and optimally-doped regime of \YBCO by means of a modified version of the fluctuation-exchange approximation, which only includes particle-hole fluctuations. Comparison of our results with Quantum-Monte Carlo (QMC) calculations at relatively high temperatures (T1000KT\sim 1000 K) suggests to introduce a temperature renormalization in order to improve the agreement between the two methods at intermediate and large values of the interaction UU. We evaluate the temperature dependence of the spin-lattice relaxation time T1T_1 and of the spin-echo decay time T2GT_{2G} and compare it with the results of NMR measurements on an underdoped and an optimally doped \YBCO sample. For U/t=4.5U/t=4.5 it is possible to consistently adjust the parameters of the Hubbard model in order to have a good {\it semi-quantitative} description of this temperature dependence for temperatures larger than the spin gap as obtained from NMR measurements. We also discuss the case U/t8U/t\sim 8, which is more appropriate to describe magnetic and single-particle properties close to half-filling. However, for this larger value of U/tU/t the agreement with QMC as well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
    corecore