88 research outputs found

    Average Lattice Symmetry and Nanoscale Structural Correlations in Magnetoresistive Manganites

    Full text link
    We report x-ray scattering studies of nanoscale structural correlations in the paramagnetic phases of the perovskite manganites La0.75_{0.75}(Ca0.45_{0.45}Sr0.55_{0.55})0.25_{0.25}MnO3_3, La0.625_{0.625}Sr0.375_{0.375}MnO3_3, and Nd0.45_{0.45}Sr0.55_{0.55}MnO3_3. We find that these correlations are present in the orthorhombic OO phase in La0.75_{0.75}(Ca0.45_{0.45}Sr0.55_{0.55})0.25_{0.25}MnO3_3, but they disappear abruptly at the orthorhombic-to-rhombohedral transition in this compound. The orthorhombic phase exhibits increased electrical resistivity and reduced ferromagnetic coupling, in agreement with the association of the nanoscale correlations with insulating regions. In contrast, the correlations were not detected in the two other compounds, which exhibit rhombohedral and tetragonal phases. Based on these results, as well as on previously published work, we propose that the local structure of the paramagnetic phase correlates strongly with the average lattice symmetry, and that the nanoscale correlations are an important factor distinguishing the insulating and the metallic phases in these compounds.Comment: a note on recent experimental work, and a new reference adde

    Resultant pressure distribution pattern along the basilar membrane in the spiral shaped cochlea

    Full text link
    Cochlea is an important auditory organ in the inner ear. In most mammals, it is coiled as a spiral. Whether this specific shape influences hearing is still an open problem. By employing a three dimensional fluid model of the cochlea with an idealized geometry, the influence of the spiral geometry of the cochlea is examined. We obtain solutions of the model through a conformal transformation in a long-wave approximation. Our results show that the net pressure acting on the basilar membrane is not uniform along its spanwise direction. Also, it is shown that the location of the maximum of the spanwise pressure difference in the axial direction has a mode dependence. In the simplest pattern, the present result is consistent with the previous theory based on the WKB-like approximation [D. Manoussaki, Phys. Rev. Lett. 96, 088701(2006)]. In this mode, the pressure difference in the spanwise direction is a monotonic function of the distance from the apex and the normal velocity across the channel width is zero. Thus in the lowest order approximation, we can neglect the existance of the Reissner's membrane in the upper channel. However, higher responsive modes show different behavior and, thus, the real maximum is expected to be located not exactly at the apex, but at a position determined by the spiral geometry of the cochlea and the width of the cochlear duct. In these modes, the spanwise normal velocities are not zero. Thus, it indicates that one should take into account of the detailed geometry of the cochlear duct for a more quantitative result. The present result clearly demonstrates that not only the spiral geometry, but also the geometry of the cochlear duct play decisive roles in distributing the wave energy.Comment: 21 pages. (to appear in J. Biol. Phys.

    Mesoscopic models for DNA stretching under force: new results and comparison to experiments

    Full text link
    Single molecule experiments on B-DNA stretching have revealed one or two structural transitions, when increasing the external force. They are characterized by a sudden increase of DNA contour length and a decrease of the bending rigidity. It has been proposed that the first transition, at forces of 60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA, while the second one, at stronger forces, is a strand peeling resulting in single stranded DNAs (ssDNA), similar to thermal denaturation. But due to experimental conditions these two transitions can overlap, for instance for poly(dA-dT). We derive analytical formula using a coupled discrete worm like chain-Ising model. Our model takes into account bending rigidity, discreteness of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit of zero force, this model simplifies into a coupled model already developed by us for studying thermal DNA melting, establishing a connexion with previous fitting parameter values for denaturation profiles. We find that: (i) ssDNA is fitted, using an analytical formula, over a nanoNewton range with only three free parameters, the contour length, the bending modulus and the monomer size; (ii) a surprisingly good fit on this force range is possible only by choosing a monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss) transitions; (iv) an analytical formula for fitting B to S transitions is derived in the strong force approximation and for long DNAs, which is in excellent agreement with exact transfer matrix calculations; (v) this formula fits perfectly well poly(dG-dC) and λ\lambda-DNA force-extension curves with consistent parameter values; (vi) a coherent picture, where S to ssDNA transitions are much more sensitive to base-pair sequence than the B to S one, emerges.Comment: 14 pages, 9 figure

    Jump-preserving varying-coefficient models for nonlinear time series

    No full text
    An important and widely used class of semiparametric models is formed by the varying-coefficient models. Although the varying coefficients are traditionally assumed to be smooth functions, the varying-coefficient model is considered here with the coefficient functions containing a finite set of discontinuities. Contrary to the existing nonparametric and varying-coefficient estimation of piecewise smooth functions, the varying-coefficient models are considered here under dependence and are applicable in time series with heteroskedastic and serially correlated errors. Additionally, the conditional error variance is allowed to exhibit discontinuities at a finite set of points too. The (uniform) consistency and asymptotic normality of the proposed estimators are established and the finite-sample performance is tested via a simulation study and in a real-data example

    PDF to PDF/A: Evaluation of Converter Software for Implementation in Digital Repository Workflow: Poster - iPRES 2012 - Digital Curation Institute, iSchool, Toronto

    No full text
    PDF/A is a version of Portable Document Format backed by ISO standard that is designed for archiving and preservation of electronic documents. Many electronic documents exist in PDF format. Due to its popularity, the ability to convert an existing PDF into a conforming PDF/A file is as important, if not more, as being able to produce documents in PDF/A format in digital preservation. In recognition of this fact and encouraged by growing interest from its affiliates, the Florida Digital Archive (FDA) conducted an evaluation of several of the PDF to PDF/A converter applications, the result of which is reported in this paper. There is room for interpretation in the ISO standards concerning PDF/A, which can be manifest in the development of software. In selecting a PDF to PDF/A converter product, reliability of the outcome in terms of PDF/A compliance must be established along with functionality. The goal of this paper is not to rank or promote the software evaluated, but rather to document the FDA’s evaluation process and present the results in such a way that they provide insight into challenges and potential drawbacks during similar evaluation or implementation

    Genetic variability of RyR2 and CASQ2 genes in an Asian population

    No full text
    10.1016/j.forsciint.2009.07.019Forensic Science International1921-353-5

    Characterization of Boron Containing Graphite Using TEM and EELS

    No full text
    corecore