20 research outputs found

    The Coupled Cluster Method in Hamiltonian Lattice Field Theory

    Get PDF
    The coupled cluster or exp S form of the eigenvalue problem for lattice Hamiltonian QCD (without quarks) is investigated. A new construction prescription is given for the calculation of the relevant coupled cluster matrix elements with respect to an orthogonal and independent loop space basis. The method avoids the explicit introduction of gauge group coupling coefficients by mapping the eigenvalue problem onto a suitable set of character functions, which allows a simplified procedure. Using appropriate group theoretical methods, we show that it is possible to set up the eigenvalue problem for eigenstates having arbitrary lattice momentum and lattice angular momentum.Comment: LaTeX, no figur

    Masses of ground and excited-state hadrons

    Get PDF
    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table
    corecore