44 research outputs found

    Singularities in the Kerr-Newman and charged ÎŽ=2\delta=2 Tomimatsu-Sato spacetimes endowed with negative mass

    Full text link
    The Kerr-Newman solution with negative mass is shown to develop a massless ring singularity off the symmetry axis. The singularity is located inside the region with closed timelike curves which has topology of a torus and lies outside the ergoregion. These characteristics are also shared by the charged Tomimatsu-Sato delta=2 solution with negative total mass to which in particular a simple form in terms of four polynomials is provided.Comment: 10 pages, 7 figures; hyperextreme case included, one reference adde

    An Epistemic Perspective on Consistency of Concurrent Computations

    Full text link
    Consistency properties of concurrent computations, e.g., sequential consistency, linearizability, or eventual consistency, are essential for devising correct concurrent algorithms. In this paper, we present a logical formalization of such consistency properties that is based on a standard logic of knowledge. Our formalization provides a declarative perspective on what is imposed by consistency requirements and provides some interesting unifying insight on differently looking properties

    Entanglement transfer from dissociated molecules to photons

    Get PDF
    We introduce and study the concept of a reversible transfer of the quantum state of two internally-translationally entangled fragments, formed by molecular dissociation, to a photon pair. The transfer is based on intracavity stimulated Raman adiabatic passage and it requires a combination of processes whose principles are well established.Comment: 5 pages, 3 figure

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity

    On Relativistic Quantum Information Properties of Entangled Wave Vectors of Massive Fermions

    Full text link
    We study special relativistic effects on the entanglement between either spins or momenta of composite quantum systems of two spin-1/2 massive particles, either indistinguishable or distinguishable, in inertial reference frames in relative motion. For the case of indistinguishable particles, we consider a balanced scenario where the momenta of the pair are well-defined but not maximally entangled in the rest frame while the spins of the pair are described by a one-parameter (η\eta) family of entangled bipartite states. For the case of distinguishable particles, we consider an unbalanced scenario where the momenta of the pair are well-defined and maximally entangled in the rest frame while the spins of the pair are described by a one-parameter (Ο\xi) family of non-maximally entangled bipartite states. In both cases, we show that neither the spin-spin (ssss) nor the momentum-momentum (mmmm) entanglements quantified by means of Wootters' concurrence are Lorentz invariant quantities: the total amount of entanglement regarded as the sum of these entanglements is not the same in different inertial moving frames. In particular, for any value of the entangling parameters, both ssss and mmmm-entanglements are attenuated by Lorentz transformations and their parametric rates of change with respect to the entanglements observed in a rest frame have the same monotonic behavior. However, for indistinguishable (distinguishable) particles, the change in entanglement for the momenta is (is not) the same as the change in entanglement for spins. As a consequence, in both cases, no entanglement compensation between spin and momentum degrees of freedom occurs.Comment: 21 pages, 8 figure

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    The Seyfert-LINER Galaxy NGC 7213: An XMM-Newton Observation

    Full text link
    We examine the XMM X-ray spectrum of the LINER-AGN NGC 7213, which is best fit with a power law, K-alpha emission lines from Fe I, Fe XXV and Fe XXVI and a soft X-ray collisionally ionised thermal plasma with kT=0.18 +0.03/-0.01 keV. We find a luminosity of 7x10^(-4) L_Edd, and a lack of soft X-ray excess emission, suggesting a truncated accretion disc. NGC 7213 has intermediate X-ray spectral properties, between those of the weak AGN found in the LINER M81 and higher luminosity Seyfert galaxies. This supports the notion of a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, likely determined by the amount of material available for accretion in the central regions.Comment: 7 pages, 2 figures. To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Experimental progress in positronium laser physics

    Get PDF
    corecore