44 research outputs found
Singularities in the Kerr-Newman and charged Tomimatsu-Sato spacetimes endowed with negative mass
The Kerr-Newman solution with negative mass is shown to develop a massless
ring singularity off the symmetry axis. The singularity is located inside the
region with closed timelike curves which has topology of a torus and lies
outside the ergoregion. These characteristics are also shared by the charged
Tomimatsu-Sato delta=2 solution with negative total mass to which in particular
a simple form in terms of four polynomials is provided.Comment: 10 pages, 7 figures; hyperextreme case included, one reference adde
An Epistemic Perspective on Consistency of Concurrent Computations
Consistency properties of concurrent computations, e.g., sequential
consistency, linearizability, or eventual consistency, are essential for
devising correct concurrent algorithms. In this paper, we present a logical
formalization of such consistency properties that is based on a standard logic
of knowledge. Our formalization provides a declarative perspective on what is
imposed by consistency requirements and provides some interesting unifying
insight on differently looking properties
Entanglement transfer from dissociated molecules to photons
We introduce and study the concept of a reversible transfer of the quantum
state of two internally-translationally entangled fragments, formed by
molecular dissociation, to a photon pair. The transfer is based on intracavity
stimulated Raman adiabatic passage and it requires a combination of processes
whose principles are well established.Comment: 5 pages, 3 figure
Modal Logics of Topological Relations
Logical formalisms for reasoning about relations between spatial regions play
a fundamental role in geographical information systems, spatial and constraint
databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's
modal logic of time intervals based on the Allen relations, we introduce a
family of modal logics equipped with eight modal operators that are interpreted
by the Egenhofer-Franzosa (or RCC8) relations between regions in topological
spaces such as the real plane. We investigate the expressive power and
computational complexity of logics obtained in this way. It turns out that our
modal logics have the same expressive power as the two-variable fragment of
first-order logic, but are exponentially less succinct. The complexity ranges
from (undecidable and) recursively enumerable to highly undecidable, where the
recursively enumerable logics are obtained by considering substructures of
structures induced by topological spaces. As our undecidability results also
capture logics based on the real line, they improve upon undecidability results
for interval temporal logics by Halpern and Shoham. We also analyze modal
logics based on the five RCC5 relations, with similar results regarding the
expressive power, but weaker results regarding the complexity
On Relativistic Quantum Information Properties of Entangled Wave Vectors of Massive Fermions
We study special relativistic effects on the entanglement between either
spins or momenta of composite quantum systems of two spin-1/2 massive
particles, either indistinguishable or distinguishable, in inertial reference
frames in relative motion. For the case of indistinguishable particles, we
consider a balanced scenario where the momenta of the pair are well-defined but
not maximally entangled in the rest frame while the spins of the pair are
described by a one-parameter () family of entangled bipartite states. For
the case of distinguishable particles, we consider an unbalanced scenario where
the momenta of the pair are well-defined and maximally entangled in the rest
frame while the spins of the pair are described by a one-parameter ()
family of non-maximally entangled bipartite states. In both cases, we show that
neither the spin-spin () nor the momentum-momentum () entanglements
quantified by means of Wootters' concurrence are Lorentz invariant quantities:
the total amount of entanglement regarded as the sum of these entanglements is
not the same in different inertial moving frames. In particular, for any value
of the entangling parameters, both and -entanglements are attenuated
by Lorentz transformations and their parametric rates of change with respect to
the entanglements observed in a rest frame have the same monotonic behavior.
However, for indistinguishable (distinguishable) particles, the change in
entanglement for the momenta is (is not) the same as the change in entanglement
for spins. As a consequence, in both cases, no entanglement compensation
between spin and momentum degrees of freedom occurs.Comment: 21 pages, 8 figure
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
The Seyfert-LINER Galaxy NGC 7213: An XMM-Newton Observation
We examine the XMM X-ray spectrum of the LINER-AGN NGC 7213, which is best
fit with a power law, K-alpha emission lines from Fe I, Fe XXV and Fe XXVI and
a soft X-ray collisionally ionised thermal plasma with kT=0.18 +0.03/-0.01 keV.
We find a luminosity of 7x10^(-4) L_Edd, and a lack of soft X-ray excess
emission, suggesting a truncated accretion disc. NGC 7213 has intermediate
X-ray spectral properties, between those of the weak AGN found in the LINER M81
and higher luminosity Seyfert galaxies. This supports the notion of a
continuous sequence of X-ray properties from the Galactic Centre through LINER
galaxies to Seyferts, likely determined by the amount of material available for
accretion in the central regions.Comment: 7 pages, 2 figures. To appear in From X-ray Binaries to Quasars:
Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender,
and L. C. Ho (Dordrecht: Kluwer
Recommended from our members
Threats to the validity of the Collegiate Learning Assessment (CLA+) as a measure of critical thinking skills and implications for Learning Gain
The University of Reading Learning Gain project is a three-year longitudinal project to test and evaluate a range of available methodologies and to draw conclusions on what might be the right combination of instruments for the measurement of Learning Gain in higher education. This paper analyses the validity of a measure of critical thinking skills, the Collegiate Learning Assessment (CLA+) and the implications of using this standardised test as a proxy for Learning Gain. The paper reviews five inferences regarding the interpretations and use of test scores: construct representation, scoring, generalisation, extrapolation and decision-making. Each section reviews some of the available evidence in support of the claims the CLA+ makes and the threats to their validity. The possible impact of these issues on Learning Gain in the UK is considered