175 research outputs found
Low-frequency measurement of the tunneling amplitude in a flux qubit
We have observed signatures of resonant tunneling in an Al three-junction
qubit, inductively coupled to a Nb LC tank circuit. The resonant properties of
the tank oscillator are sensitive to the effective susceptibility (or
inductance) of the qubit, which changes drastically as its flux states pass
through degeneracy. The tunneling amplitude is estimated from the data. We find
good agreement with the theoretical predictions in the regime of their
validity.Comment: REVTeX4, 3pp., 3 EPS figures. v2: new sample, textual clarifications.
v3: minor polishing; final, to appear in PRB Rapid
Theory of weak continuous measurements in a strongly driven quantum bit
Continuous spectroscopic measurements of a strongly driven superconducting
qubit by means of a high-quality tank circuit (a linear detector) are under
study. Output functions of the detector, namely, a spectrum of voltage
fluctuations and an impedance, are expressed in terms of the qubit spectrum and
magnetic susceptibility. The nonequilibrium spectrum of the current
fluctuations in the qubit loop and the linear response function of the driven
qubit coupled to a heat bath are calculated with Bloch-Redfield and rotating
wave approximations. Backaction effects of the qubit on the tank and the tank
on the qubit are analyzed quantitatively. We show that the voltage spectrum of
the tank provides detailed information about a frequency and a decay rate of
Rabi oscillations in the qubit. It is found that both an efficiency of
spectroscopic measurement and measurement-induced decoherence of the qubit
demonstrate a resonant behaviour as the Rabi frequency approaches the resonant
frequency of the tank. We determine conditions when the spectroscopic
observation of the Rabi oscillations in the flux qubit with the tank circuit
can be considered as a weak continuous quantum measurement.Comment: 28 page
Decoherence and Relaxation of a Quantum Bit in the Presence of Rabi Oscillations
Dissipative dynamics of a quantum bit driven by a strong resonant field and
interacting with a heat bath is investigated. We derive generalized Bloch
equations and find modifications of the qubit's damping rates caused by Rabi
oscillations. Nonequilibrium decoherence of a phase qubit inductively coupled
to a LC-circuit is considered as an illustration of the general results. It is
argued that recent experimental results give a clear evidence of effective
suppression of decoherence in a strongly driven flux qubit.Comment: 14 pages; misprints correcte
Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily
In order to empirically assess the effect of actual seed sampling strategy on
genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have
analysed the genetic composition of two seedling lots (nursery stock and
plantation) and their known natural seed origin stand by means of six nuclear
microsatellite loci. Significant reduction in genetic diversity and significant
difference in genetic composition of the seedling lots compared to the seed
origin stand were detected. The female and the total effective number of
parents were quantified by means of maternity assignment of seedlings and
temporal changes in allele frequencies. Extremely low effective maternity
numbers were estimated (Nfe 2-4) and estimates accounting for both
seed and pollen donors gave also low values (Ne 35-50). These values
can be explained by an inappropriate forestry seed harvest strategy limited to
a small number of spatially close trees
A switchable controlled-NOT gate in a spin-chain NMR quantum computer
A method of switching a controlled-NOT gate in a solid-stae NMR quantum
computer is presented. Qubits of I=1/2 nuclear spins are placed periodically
along a quantum spin chain (1-D antiferromagnet) having a singlet ground state
with a finite spin gap to the lowest excited state caused by some quantum
effect. Irradiation of a microwave tuned to the spin gap energy excites a
packet of triplet magnons at a specific part of the chain where control and
target qubits are involved. The packet switches on the Suhl-Nakamura
interaction between the qubits, which serves as a controlled NOT gate. The
qubit initialization is achieved by a qubit initializer consisting of
semiconducting sheets attached to the spin chain, where spin polarizations
created by the optical pumping method in the semiconductors are transferred to
the spin chain. The scheme allows us to separate the initialization process
from the computation, so that one can optimize the computation part without
being restricted by the initialization scheme, which provides us with a wide
selection of materials for a quantum computer.Comment: 8 pages, 5 figure
- …