872 research outputs found

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    A Semi-automatic Search for Giant Radio Galaxy Candidates and their Radio-Optical Follow-up

    Full text link
    We present results of a search for giant radio galaxies (GRGs) with a projected largest linear size in excess of 1 Mpc. We designed a computational algorithm to identify contiguous emission regions, large and elongated enough to serve as GRG candidates, and applied it to the entire 1.4-GHz NRAO VLA Sky survey (NVSS). In a subsequent visual inspection of 1000 such regions we discovered 15 new GRGs, as well as many other candidate GRGs, some of them previously reported, for which no redshift was known. Our follow-up spectroscopy of 25 of the brighter hosts using two 2.1-m telescopes in Mexico, and four fainter hosts with the 10.4-m Gran Telescopio Canarias (GTC), yielded another 24 GRGs. We also obtained higher-resolution radio images with the Karl G. Jansky Very Large Array for GRG candidates with inconclusive radio structures in NVSS.Comment: 4 pages, 1 figure, to appear in the proceedings of The Universe of Digital Sky Surveys, Naples, Italy, Nov 25-28, 2014; Astrophysics and Space Science, eds. N.R. Napolitano et a

    Positivity constraints for lepton polarization in neutrino deep inelastic scattering

    Full text link
    We consider the spin polarization of leptons produced in neutrino and antineutrino nucleon deep inelastic scattering, via charged currents, and we study the positivity constraints on the spin components in a model independent way. These results are very important, in particular in the case of τ±\tau^{\pm} leptons, because the polarization information is crucial in all future neutrino oscillation experiments.Comment: 14 pages, 4 figure

    Predictive Models of Large Neutrino Mixing Angles

    Get PDF
    Several experimental results could be interpreted as evidence that certain neutrino mixing angles are large, of order unity. However, in the context of grand unified models the neutrino angles come out characteristically to be small, like the KM angles. It is shown how to construct simple grand-unified models in which neutrino angles are not only large but completely predicted with some precision. Six models are presented for illustration.Comment: 19 pages, LaTe

    Quasars and their host galaxies

    Full text link
    This review attempts to describe developments in the fields of quasar and quasar host galaxies in the past five. In this time period, the Sloan and 2dF quasar surveys have added several tens of thousands of quasars, with Sloan quasars being found to z>6. Obscured, or partially obscured quasars have begun to be found in significant numbers. Black hole mass estimates for quasars, and our confidence in them, have improved significantly, allowing a start on relating quasar properties such as radio jet power to fundamental parameters of the quasar such as black hole mass and accretion rate. Quasar host galaxy studies have allowed us to find and characterize the host galaxies of quasars to z>2. Despite these developments, many questions remain unresolved, in particular the origin of the close relationship between black hole mass and galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update

    Quark and Lepton Mass Matrices in the SO(10) Grand Unified Theory with Generation Flipping

    Full text link
    We investigate the SO(10) grand unified model with generation flipping. The model contains one extra matter multiplet ψ(10)\psi(10) and it mixes with the usual matter multiplets ψi(16)\psi_i(16) when the SO(10) is broken down to SU(5). We find the parameter region of the model in which the observed quark masses and mixings are well reproduced. The resulting parameter region is consistent with the observation that only ψi(16)\psi_i(16) have a source of hierarchies and indicates that the mixing between second and third generations tends to be large in the lepton sector, which is consistent with the observed maximal mixing of the atmospheric neutrino oscillation. We also show that the model can accommodate MSW and vacuum oscillation solutions to the solar neutrino deficit depending on the form of the Majorana mass matrix for the right-handed neutrinos.Comment: 28 pages, Late

    Additional Nucleon Current Contributions to Neutrinoless Double Beta Decay

    Get PDF
    We have examined the importance of momentum dependent induced nucleon currents such as weak-magnetism and pseudoscalar couplings to the amplitude of neutrinoless double beta decay in the mechanisms of light and heavy Majorana neutrino as well as in that of Majoron emission. Such effects are expected to occur in all nuclear models in the direction of reducing the light neutrino matrix elements by about 30%. To test this we have performed a calculation of the nuclear matrix elements of the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 within the pn-RQRPA. We have found that indeed such corrections vary somewhat from nucleus to nucleus, but in all cases they are greater than 25 percent. In the case of heavy neutrino the effect is much larger (a factor of 3). Combining out results with the best presently available experimental limits on the half-life of the neutrinoless double beta decay we have extracted new limits on the effective neutrino mass (light and heavy) and the effective Majoron coupling constant.Comment: 31 pages, RevTex, 3 Postscript figures, submitted to Phys. Rev.

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    DNA Damage Mediated S and G2 Checkpoints in Human Embryonal Carcinoma Cells

    Get PDF
    For mouse embryonic stem (ES) cells, the importance of the S and G2 cell cycle checkpoints for genomic integrity is increased by the absence of the G1 checkpoint. We have investigated ionizing radiation (IR)-mediated cell cycle checkpoints in undifferentiated and retinoic acid-differentiated human embryonal carcinoma (EC) cells. Like mouse ES cells, human EC cells did not undergo G1 arrest after IR but displayed a prominent S-phase delay followed by a G2-phase delay. In contrast, although differentiated EC cells also failed to arrest at G1-phase after IR, they quickly exited S-phase and arrested in G2-phase. In differentiated EC cells, the G2-M-phase cyclin B1/CDC2 complex was upregulated after IR, but the G1-S-phase cyclin E and the cyclin E/CDK2 complex were expressed at constitutively low levels, which could be an important factor distinguishing DNA damage responses between undifferentiated and differentiated EC cells. S-phase arrest and expression of p21 could be inhibited by 7-hydroxystaurosporine, suggesting that the ataxia-telangiectasia and Rad-3-related-checkpoint kinase 1 (ATR-CHK1), and p21 pathways might play a role in the IR-mediated S-phase checkpoint in EC cells. IR-mediated phosphorylation of ataxia-telangiectasia mutated, (CHK1), and checkpoint kinase 2 were distinctly higher in undifferentiated EC cells compared with differentiated EC cells. Combined with the prominent S and G2 checkpoints and a more efficient DNA damage repair system, these mechanisms operate together in the maintenance of genome stability for EC cells. Stem Cells 2009;27:568–57
    corecore