68,336 research outputs found
Circular 22
Alaska 114 was formally released
to the Alaska Certified Seed G rowers
Association in 1954 although it
had been field tested by a few members
during the preceding year. The
selection was made from seedlings
derived from a cross of Cobbler x
Minnesota 13-1.Cooperating with the Agricultural Research Service, U.S. Department of Agricultur
Circular 18
Weed control studies at the Matanuska Experiment
Station during the past two seasons have
shown that many garden and field crops can be
weeded satisfactorily with chemioals. Killing
weeds with chemicals promises many benefits to
the Alaskan farmer and gardener. Chemical weed:
killing is cheap and effective—more important
this practice helps reduce the seasonal peak labor
loads encountered in truck growing enterprises.
This circular tells what the Alaska farmer and
gardener can expect weed killers to do for him under Alaskan conditions.Cooperating with the United States Department of Agriculture, Agricultural Research Administratio
Changes in physical and chemical variables
An article reviewing the work undertaken looking at the seasonal variation of chemical conditions in water at various depths in lakes. The laboratory tests undertaken for the research is outlined, as well as details of the sampling locations and the staff involved with the work. One figure shows the seasonal variation in the amounts of dissolved substances in the surface water of Windermere during 1936. Another figure shows seasonal varation inthe dry weight of phyto- and zooplankton in Windermere. Seasonal changes are discussed further and a table is included showing chemical conditions in winter and summer for Windermere
Lake deposits
An article detailing further developments in the bathymetric survey work as detailed in the 6th annual report of the Freshwater Biological Association. Work has concentrated on investigating the layering in lake deposits (with the use of special equipment and corers), extending the area of lake for bathymetric surveys and the analysis of diatoms and plant material from core samples. A number of waterbodies in the Lake District are investigated, including: Bassenthwaite Lake, Derwentwater, Ennerdale Water, Rydal Water, Coniston Water, Buttermere Lake, Grasmere Lake, Esthwaite Water, Loweswater Lake, Haweswater Reservoir, Crummock Water, Ullswater Lake, Thirlmere Reservoir, Wastwater and Lake Windermere
The Power of LOCCq State Transformations
Reversible state transformations under entanglement non-increasing operations
give rise to entanglement measures. It is well known that asymptotic local
operations and classical communication (LOCC) are required to get a simple
operational measure of bipartite pure state entanglement. For bipartite mixed
states and multipartite pure states it is likely that a more powerful class of
operations will be needed. To this end \cite{BPRST01} have defined more
powerful versions of state transformations (or reducibilities), namely LOCCq
(asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC
(asymptotic LOCC with catalysis). In this paper we show that {\em LOCCq state
transformations are only as powerful as asymptotic LOCC state transformations}
for multipartite pure states. We first generalize the concept of entanglement
gambling from two parties to multiple parties: any pure multipartite entangled
state can be transformed to an EPR pair shared by some pair of parties and that
any irreducible party pure state can be used to create any other
state (pure or mixed), using only local operations and classical communication
(LOCC). We then use this tool to prove the result. We mention some applications
of multipartite entanglement gambling to multipartite distillability and to
characterizations of multipartite minimal entanglement generating sets. Finally
we discuss generalizations of this result to mixed states by defining the class
of {\em cat distillable states}
Economic Dynamics, Contribution to the Encyclopedia of Nonlinear Science, Alwyn Scott (ed.), Routledge, 2004.
Contribution to the Encyclopedia of Nonlinear Science, Alwyn Scott (ed.), Routledge, 2005, pp.245-248.
Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006, pp.1109-1186.
This chapter surveys work on dynamic heterogeneous agent models (HAMs) in economics and finance. Emphasis is given to simple models that, at least to some extent, are tractable by analytic methods in combination with computational tools. Most of these models are behavioral models with boundedly rational agents using different heuristics or rule of thumb strategies that may not be perfect, but perform reasonably well. Typically these models are highly nonlinear, e.g. due to evolutionary switching between strategies, and exhibit a wide range of dynamical behavior ranging from a unique stable steady state to complex, chaotic dynamics. Aggregation of simple interactions at the micro level may generate sophisticated structure at the macro level. Simple HAMs can explain important observed stylized facts in financial time series, such as excess volatility, high trading volume, temporary bubbles and trend following, sudden crashes and mean reversion, clustered volatility and fat tails in the returns distribution.
Uses of the pitch-scaled harmonic filter in speech processing
The pitch-scaled harmonic filter (PSHF) is a technique for decomposing speech signals into their periodic and aperiodic constituents, during periods of phonation. In this paper, the use of the PSHF for speech analysis and processing tasks is described. The periodic component can be used as an estimate of the part attributable to voicing, and the aperiodic component can act as an estimate of that attributable to turbulence noise, i.e., from fricative, aspiration and plosive sources. Here we present the algorithm for separating the periodic and aperiodic components from the pitch-scaled Fourier transform of a short section of speech, and show how to derive signals suitable for time-series analysis and for spectral analysis. These components can then be processed in a manner appropriate to their source type, for instance, extracting zeros as well as poles from the aperiodic spectral envelope. A summary of tests on synthetic speech-like signals demonstrates the robustness of the PSHF's performance to perturbations from additive noise, jitter and shimmer. Examples are given of speech analysed in various ways: power spectrum, short-time power and short-time harmonics-to-noise ratio, linear prediction and mel-frequency cepstral coefficients. Besides being valuable for speech production and perception studies, the latter two analyses show potential for incorporation into speech coding and speech recognition systems. Further uses of the PSHF are revealing normally-obscured acoustic features, exploring interactions of turbulence-noise sources with voicing, and pre-processing speech to enhance subsequent operations
Analysis of harmonics in subsea power transmission cables used in VSC-HVDC transmission systems operating under steady-state conditions
Subsea power cables are a critical component of a voltage-source converter-high-voltage direct current (VSC-HVDC) transmission system in any offshore electrical power scheme. Subsea cables have complicated structures consisting of many different layers: conductor, insulation, sheath, and armor. Harmonic performance of the system depends upon the interactions between the subsea cable, the power converters, and other system components, such as smoothing capacitors. In this paper, a mathematical model of an HVDC-VSC transmission system is developed and its harmonic performance is investigated for steady-state operating conditions. The results suggest that the design of the subsea transmission cable has important effects on harmonic levels in the voltage and current waveforms in the cable and upon power loss within the transmission system. This paper demonstrates that it is always important to consider interactions between all of the system components when predicting harmonic performance in a VSC-HVDC transmission system
AlAsSb avalanche photodiodes with a sub-mV/K temperature coefficient of breakdown voltage
The temperature dependence of dark current and avalanche gain were measured on AlAsSb p-i-n diodes with avalanche region widths of 80 and 230 nm. Measurements at temperatures ranging from 77 to 295 K showed that the dark current decreases rapidly with reducing temperature while avalanche gain exhibits a weak temperature dependence. No measurable band to band tunneling current was observed in the thinner diodes at an electric field of 1.07 MV/cm, corresponding to a bias of 95% of the breakdown voltage. Temperature coefficients of breakdown voltage of 0.95 and 1.47 mV/K were obtained from 80 and 230 nm diodes, respectively. These are significantly lower than a range of semiconductor materials with similar avalanche region widths. Our results demonstrated the potential of using thin AlAsSb avalanche regions to achieve low temperature coefficient of breakdown voltage without suffering from high band to band tunneling current
- …
