44 research outputs found
Heart of Darkness: The Significance of the Zeptobarn Scale for Neutralino Direct Detection
The direct detection of dark matter through its elastic scattering off
nucleons is among the most promising methods for establishing the particle
identity of dark matter. The current bound on the spin-independent scattering
cross section is sigma^SI < 10 zb for dark matter masses m_chi ~ 100 GeV, with
improved sensitivities expected soon. We examine the implications of this
progress for neutralino dark matter. We work in a supersymmetric framework
well-suited to dark matter studies that is simple and transparent, with models
defined in terms of four weak-scale parameters. We first show that robust
constraints on electric dipole moments motivate large sfermion masses mtilde >
1 TeV, effectively decoupling squarks and sleptons from neutralino dark matter
phenomenology. In this case, we find characteristic cross sections in the
narrow range 1 zb 70 GeV. As sfermion masses are
lowered to near their experimental limit mtilde ~ 400 GeV, the upper and lower
limits of this range are extended, but only by factors of around two, and the
lower limit is not significantly altered by relaxing many particle physics
assumptions, varying the strange quark content of the nucleon, including the
effects of galactic small-scale structure, or assuming other components of dark
matter. Experiments are therefore rapidly entering the heart of dark
matter-favored supersymmetry parameter space. If no signal is seen,
supersymmetric models must contain some level of fine-tuning, and we identify
and analyze several possibilities. Barring large cancellations, however, in a
large and generic class of models, if thermal relic neutralinos are a
significant component of dark matter, experiments will discover them as they
probe down to the zeptobarn scale.Comment: 35 pages, 11 figures; v2: references added, figures extended to 2 TeV
neutralino masses, XENON100 results included, published versio
Reconciling Neutralino Relic Density with Yukawa Unified Supersymmetric Models
Supersymmetric grand unified models based on the gauge group SO(10) are
especially attractive in light of recent data on neutrino masses. The simplest
SO(10) SUSY GUT models predict unification of third generation Yukawa couplings
in addition to the usual gauge coupling unification. Recent surveys of Yukawa
unified SUSY GUT models predict an inverted scalar mass hierarchy in the
spectrum of sparticle masses if the superpotential mu term is positive. In
general, such models tend to predict an overabundance of dark matter in the
universe. We survey several solutions to the dark matter problem in Yukawa
unified supersymmetric models. One solution-- lowering the GUT scale mass value
of first and second generation scalars-- leads to u_R and c_R squark masses in
the 90-120 GeV regime, which should be accessible to Fermilab Tevatron
experiments. We also examine relaxing gaugino mass universality which may solve
the relic density problem by having neutralino annihilations via the Z or h
resonances, or by having a wino-like LSP.Comment: 21 page file plus 9 figures; updated version to coincide with
published versio
Inclusive particle production at HERA: Higher-order QCD corrections to the resolved quasi-real photon contribution
We calculate in next-to-leading order inclusive cross sections of
single-particle production via resolved photons in collisions at HERA.
Transverse-momentum and rapidity distributions are presented and the scale
dependence is studied. The results are compared with first experimental data
from the H1 Collaboration at HERA.Comment: 11 pages with 15 uuencoded PS figures. Preprint DESY 93-03
Constraining the MSSM with universal gaugino masses and implication for searches at the LHC
Using a Markov chain Monte Carlo approach, we find the allowed parameter
space of a MSSM model with seven free parameters. In this model universality
conditions at the GUT scale are imposed on the gaugino sector. We require in
particular that the relic density of dark matter saturates the value extracted
from cosmological measurements assuming a standard cosmological scenario. We
characterize the parameter space of the model that satisfies experimental
constraints and illustrate the complementarity of the LHC searches, B-physics
observables and direct dark matter searches for further probing the parameter
space of the model. We also explore the different decay chains expected for the
coloured particles that would be produced at LHC.Comment: 29 pages, 11 figure
Wedgebox analysis of four-lepton events from neutralino pair production at the LHC
`Wedgebox' plots constructed by plotting the di-electron invariant mass
versus the di-muon invariant mass from pp -> e^+e^- mu^+ mu^- + missing energy
signature LHC events. Data sets of such events are obtained across the MSSM
input parameter space in event-generator simulations, including cuts designed
to remove SM backgrounds. Their study reveals several general features:
(1)Regions in the MSSM input parameter space where a sufficient number of
events are expected so as to be able to construct a clear wedgebox plot are
delineated. (2)The presence of box shapes on a wedgebox plot either indicates
the presence of heavy Higgs bosons decays or restricts the location to a quite
small region of low \mu and M_2 values \lsim 200 GeV, a region denoted as the
`lower island'. In this region, wedgebox plots can be quite complicated and
change in pattern rather quickly as one moves around in the (\mu, M_2) plane.
(3)Direct neutralino pair production from an intermediate Z^{0*} may only
produce a wedge-shape since only \widetilde{\chi}_2^0\widetilde{\chi}_3^0
decays can contribute significantly. (4)A double-wedge or
wedge-protruding-from-a-box pattern on a wedgebox plot, which results from
combining a variety of MSSM production processes, yields three distinct
observed endpoints, almost always attributable to \widetilde{\chi}_{2,3,4}^0
\to \widetilde{\chi}_1^0 \ell^+\ell^- decays, which can be utilized to
determine a great deal of information about the neutralino and slepton mass
spectra and related MSSM input parameters. Wedge and double-wedge patterns are
seen in wedgebox plots in another region of higher \mu and M_2 values, denoted
as the`upper island.' Here the pattern is simpler and more stable as one moves
across the (\mu, M_2) input parameter space.Comment: 28 pages (LaTeX), 8 figures (encapsulated postscript
Aspects of Two-Photon Physics at Linear e+e- Colliders
We discuss various reactions at future e+e- and gamma-gamma colliders
involving real (beamstrahlung or backscattered laser) or quasi--real
(bremsstrahlung) photons in the initial state and hadrons in the final state.
The production of two central jets with large pT is described in some detail;
we give distributions for the rapidity and pT of the jets as well as the
di--jet invariant mass, and discuss the relative importance of various initial
state configurations and the uncertainties in our predictions. We also present
results for `mono--jet' production where one jet goes down a beam pipe, for the
production of charm, bottom and top quarks, and for single production of W and
Z bosons. Where appropriate, the two--photon processes are compared with
annihilation reactions leading to similar final states. We also argue that the
behaviour of the total inelastic gamma-gamma cross section at high energies
will probably have little impact on the severity of background problems caused
by soft and semi--hard (`minijet') two--photon reactions. We find very large
differences in cross sections for all two--photon processes between existing
designs for future e+e- colliders, due to the different beamstrahlung spectra;
in particular, both designs with >1 events per bunch crossing exist.Comment: 51 pages, 13 figures(not included
Supersymmetry Without Prejudice
We begin an exploration of the physics associated with the general
CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY
breaking parameters in this scenario are chosen so as to satisfy all existing
experimental and theoretical constraints assuming that the WIMP is a
conventional thermal relic, ie, the lightest neutralino. We scan this parameter
space twice using both flat and log priors for the soft SUSY breaking mass
parameters and compare the results which yield similar conclusions. Detailed
constraints from both LEP and the Tevatron searches play a particularly
important role in obtaining our final model samples. We find that the pMSSM
leads to a much broader set of predictions for the properties of the SUSY
partners as well as for a number of experimental observables than those found
in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of
models can easily lead to atypical expectations for SUSY signals at the LHC.Comment: 61 pages, 24 figs. Refs., figs, and text added, typos fixed; This
version has reduced/bitmapped figs. For a version with better figs please go
to http://www.slac.stanford.edu/~rizz
Dijet Rapidity Gaps in Photoproduction from Perturbative QCD
By defining dijet rapidity gap events according to interjet energy flow, we
treat the photoproduction cross section of two high transverse momentum jets
with a large intermediate rapidity region as a factorizable quantity in
perturbative QCD. We show that logarithms of soft gluon energy in the interjet
region can be resummed to all orders in perturbation theory. The resummed cross
section depends on the eigenvalues of a set of soft anomalous dimension
matrices, specific to each underlying partonic process, and on the
decomposition of the scattering according to the possible patterns of hard
color flow. We present a detailed discussion of both. Finally, we evaluate
numerically the gap cross section and gap fraction and compare the results with
ZEUS data. In the limit of low gap energy, good agreement with experiment is
obtained.Comment: 37 pages, Latex, 17 figure
Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1
On the basis of frequentist analyses of experimental constraints from
electroweak precision data, g-2, B physics and cosmological data, we
investigate the parameters of the constrained MSSM (CMSSM) with universal soft
supersymmetry-breaking mass parameters, and a model with common non-universal
Higgs masses (NUHM1). We present chi^2 likelihood functions for the masses of
supersymmetric particles and Higgs bosons, as well as b to s gamma, b to mu mu
and the spin-independent dark matter scattering cross section. In the CMSSM we
find preferences for sparticle masses that are relatively light. In the NUHM1
the best-fit values for many sparticle masses are even slightly smaller, but
with greater uncertainties. The likelihood functions for most sparticle masses
are cut off sharply at small masses, in particular by the LEP Higgs mass
constraint. Both in the CMSSM and the NUHM1, the coannihilation region is
favoured over the focus-point region at about the 3-sigma level, largely but
not exclusively because of g-2. Many sparticle masses are highly correlated in
both the CMSSM and NUHM1, and most of the regions preferred at the 95% C.L. are
accessible to early LHC running. Some slepton and chargino/neutralino masses
should be in reach at the ILC. The masses of the heavier Higgs bosons should be
accessible at the LHC and the ILC in portions of the preferred regions in the
(M_A, tan beta) plane. In the CMSSM, the likelihood function for b to mu mu is
peaked close to the Standard Model value, but much larger values are possible
in the NUHM1. We find that values of the DM cross section > 10^{-10} pb are
preferred in both the CMSSM and the NUHM1. We study the effects of dropping the
g-2, b to s gamma, relic density and M_h constraints.Comment: 34 pages, 24 figure
Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of the Dwarf Galaxy Segue 1
The dwarf galaxy Segue 1 is one of the most promising targets for the
indirect detection of dark matter. Here we examine what constraints 9 months of
Fermi-LAT gamma-ray observations of Segue 1 place upon the Constrained Minimal
Supersymmetric Standard Model (CMSSM), with the lightest neutralino as the dark
matter particle. We use nested sampling to explore the CMSSM parameter space,
simultaneously fitting other relevant constraints from accelerator bounds, the
relic density, electroweak precision observables, the anomalous magnetic moment
of the muon and B-physics. We include spectral and spatial fits to the Fermi
observations, a full treatment of the instrumental response and its related
uncertainty, and detailed background models. We also perform an extrapolation
to 5 years of observations, assuming no signal is observed from Segue 1 in that
time. Results marginally disfavour models with low neutralino masses and high
annihilation cross-sections. Virtually all of these models are however already
disfavoured by existing experimental or relic density constraints.Comment: 22 pages, 5 figures; added extra scans with extreme halo parameters,
expanded introduction and discussion in response to referee's comment