4 research outputs found

    The Diffraction Pattern of Dry Blood Smears

    No full text

    Self rating of health is associated with stressful life events, social support and residency in East and West Berlin shortly after the fall of the wall

    No full text
    STUDY OBJECTIVE—To compare the health status and factors influencing the health of populations that had previously lived under different political systems.‹DESIGN—Cross sectional health and social survey using postal interviews. The relation between self reported health and psychosocial factors (stressful life events, social support, education, health promoting life style and health endangering behaviour) was investigated. To determine East-West differences a logistic regression model including interaction terms was fitted.‹SETTING—East and West Berlin shortly after reunification 1991.‹PARTICIPANTS—Representative sample of 4430 Berlin residents aged 18 years and over (response rate 63%).‹RESULTS—Of all respondents, 15.4% rated their health as unsatisfactory. Residents of East Berlin rated their health more frequently as unsatisfactory than residents of West Berlin (Or(age adjusted)= 1.29, 95%CI 1.08, 1.52), these differences occurred predominantly in the over 60 years age group. Logistic regression showed significant independent effects of stressful life events, social support, education, and health promoting life style on self rated health. The effects of education and health promoting life style were observed to be more pronounced in the western part of Berlin. Old age and female sex showed a stronger association with unsatisfactory health status in the eastern part of Berlin.‹CONCLUSIONS—For subjects aged over 60 years there was evidence that living in the former East Berlin had an adverse effect on health compared with West Berlin. The impact of education and a health promoting lifestyle on self rated health seemed to be weaker in a former socialist society compared with that of a Western democracy. This study supports an "additive model" rather than a "buffering model" in explaining the effects of psychosocial factors on health.‹‹‹Keywords: self rated health; health inequalities; stress; social suppor

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore