851 research outputs found

    The Irreducible Spine(s) of Undirected Networks

    Full text link
    Using closure concepts, we show that within every undirected network, or graph, there is a unique irreducible subgraph which we call its "spine". The chordless cycles which comprise this irreducible core effectively characterize the connectivity structure of the network as a whole. In particular, it is shown that the center of the network, whether defined by distance or betweenness centrality, is effectively contained in this spine. By counting the number of cycles of length 3 <= k <= max_length, we can also create a kind of signature that can be used to identify the network. Performance is analyzed, and the concepts we develop are illurstrated by means of a relatively small running sample network of about 400 nodes.Comment: Submitted to WISE 201

    Bi-Objective Community Detection (BOCD) in Networks using Genetic Algorithm

    Full text link
    A lot of research effort has been put into community detection from all corners of academic interest such as physics, mathematics and computer science. In this paper I have proposed a Bi-Objective Genetic Algorithm for community detection which maximizes modularity and community score. Then the results obtained for both benchmark and real life data sets are compared with other algorithms using the modularity and MNI performance metrics. The results show that the BOCD algorithm is capable of successfully detecting community structure in both real life and synthetic datasets, as well as improving upon the performance of previous techniques.Comment: 11 pages, 3 Figures, 3 Tables. arXiv admin note: substantial text overlap with arXiv:0906.061

    Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics

    Full text link
    We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of biological coevolution. Selection is provided through a reproduction probability that contains quenched, random interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynamics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probability density for the lifetimes of ecological communities is well approximated by a power law with exponent near -2, and the corresponding power spectral densities show 1/f noise (flicker noise) over several decades. The long-lived communities (quasi-steady states) consist of a relatively small number of mutualistically interacting species, and they are surrounded by a ``protection zone'' of closely related genotypes that have a very low probability of invading the resident community. The extent of the protection zone affects the stability of the community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a physical system. Measures of biological diversity are on average stationary with no discernible trends, even over our very long simulation runs of approximately 3.4x10^7 generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio

    Investigating atmospheric predictability on Mars using breeding vectors in a general-circulation model

    Get PDF
    A breeding vectors approach is used to investigate the hypothesis that the Martian atmosphere is predictable at certain times of year, by identifying the fastest-growing modes of instability at different times in a Mars general-circulation model. Results indicate that the period from northern mid-spring until mid-autumn is remarkably predictable, with negative global growth rates for a range of conditions, in contrast to the situation on the earth. From northern late autumn to early spring growing modes do occur, peaking in northern high latitudes and near winter solstice. Reducing the size of the initial perturbations increases global growth rates in most cases, supporting the idea that instabilities which saturate nonlinearly at lower amplitudes have generally faster growth rates. In late autumn/early winter the fastest-growing modes ('bred vectors') are around the north pole, increase with dust loading, and probably grow via barotropic as well as baroclinic energy conversion. In northern late winter/early spring the bred vectors are around the north pole and are strongly baroclinic in nature. As dust loading (and with it the global circulation strength) is increased their growth rates first decrease, as the baroclinic mode is suppressed, then increase again as the fastest-growing instabilities switch to being those which dominated earlier in the year. If dust levels are very low during late northern autumn (late southern spring) then baroclinic modes are also found around the spring pole in the south, though for a slight increase in dust loading the dominant modes shift back to northern high latitudes. The bred vectors are also used as perturbations to the initial conditions for ensemble simulations. One possible application within the Mars model is as a means of identifying regions and times when dust-lifting activity (related to surface wind stress) might show significant interannual variability for a given model configuration, without the need to perform long, computationally expensive multi-year model runs with each new set-up. This is tested for a time of year when previous multi-year experiments showed significant variability in dust storm onset in the region north of Chryse. Despite the model having no feedbacks between dust lifting and atmospheric state (unlike the original multi-year run), the ensemble members still show maximum divergence in this region in terms of near-surface wind stress, suggesting both that this application deserves further testing, and that the intrinsic atmospheric variability alone may be important in producing interannual variability in this storm type

    Phase Transition in Ferromagnetic Ising Models with Non-Uniform External Magnetic Fields

    Full text link
    In this article we study the phase transition phenomenon for the Ising model under the action of a non-uniform external magnetic field. We show that the Ising model on the hypercubic lattice with a summable magnetic field has a first-order phase transition and, for any positive (resp. negative) and bounded magnetic field, the model does not present the phase transition phenomenon whenever lim infhi>0\liminf h_i> 0, where h=(hi)iZd{\bf h} = (h_i)_{i \in \Z^d} is the external magnetic field.Comment: 11 pages. Published in Journal of Statistical Physics - 201
    corecore