74 research outputs found

    Random effects diagonal metric multidimensional scaling models

    Full text link
    By assuming a distribution for the subject weights in a diagonal metric (INDSCAL) multidimensional scaling model, the subject weights become random effects. Including random effects in multidimensional scaling models offers several advantages over traditional diagonal metric models such as those fitted by the INDSCAL, ALSCAL, and other multidimensional scaling programs. Unlike traditional models, the number of parameters does not increase with the number of subjects, and, because the distribution of the subject weights is modeled, the construction of linear models of the subject weights and the testing of those models is immediate. Here we define a random effects diagonal metric multidimensional scaling model, give computational algorithms, describe our experiences with these algorithms, and provide an example illustrating the use of the model and algorithms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45758/1/11336_2005_Article_BF02295730.pd

    Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity

    Get PDF
    Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (Fc gamma RIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger Fc gamma RIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.Proteomic

    High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages

    Get PDF
    Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fc gamma receptor (Fc gamma R) Ila and FeyRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.Proteomic

    Optimistic Atomic Multicast

    No full text
    Message ordering is one of the cornerstones of reliable distributed systems. However, some ordering guarantees, such as atomic order, are expensive to implement in terms of message delays. This paper presents Optimistic Atomic Multicast, a protocol that combines reduced latency and increased throughput. Messages can be delivered optimistically in a single communication step and conservatively in three communication steps. Differently from previous optimistic group communication protocols, Optimistic Atomic Multicast does not rely on spontaneous message ordering for fast delivery. In addition to presenting Optimistic Atomic Multicast, we provide detailed performance results comparing it to other ordering protocols in both local-area and wide-area networks

    Lapatinib: Vorinostat

    No full text
    corecore