4 research outputs found

    Associations of LINE-1 DNA Methylation with Preterm Birth in a Prospective Cohort Study

    Get PDF
    Preterm birth affects over 12% of all infants born in the US yet the biology of early delivery remains unclear, including whether epigenetic mechanisms are involved. We examined associations of maternal and umbilical cord blood long interspersed nuclear element-1 (LINE-1) DNA methylation with length of gestation and odds of preterm birth in singleton pregnancies in Project Viva. In white blood cells from maternal blood during 1(st) trimester (n=914) and 2(nd) trimester (n=922), and from venous cord blood at delivery (n=557), we measured LINE-1 by pyrosequencing (expressed as %5 methyl cytosines within the LINE-1 region analyzed [%5mC]). We ran linear regression models to analyze differences in gestation length, and logistic models for odds of preterm birth (<37 v. 6537 weeks gestation), across quartiles of LINE-1. Mean(SD) LINE-1 levels were 84.3(0.6), 84.5(0.4), and 84.6(0.7) %5mC for 1(st) trimester, 2(nd) trimester and cord blood, respectively. Mean(SD) gestational age was 39.5(1.8) weeks, and 6.5% of infants were born preterm. After adjustment for maternal age, race/ethnicity, BMI, education, smoking status, and fetal sex, women with the highest vs. lowest quartile of 1(st) trimester LINE-1 had longer gestations (0.45 weeks [95% CI 0.12, 0.78]) and lower odds of preterm birth (OR 0.40 [0.17, 0.94]), whereas associations with cord blood LINE-1 were in the opposite direction (-0.45 weeks, -0.83, -0.08) and (OR 4.55 [1.18, 17.5]). In conclusion, higher early pregnancy LINE-1 predicts lower risk of preterm birth. In contrast, preterm birth is associated with lower LINE-1 in cord blood

    Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood : prospective results from a folate-replete population

    No full text
    Maternal diet affects offspring DNA methylation in animal models, but evidence from humans is limited. We investigated the extent to which gestational intake of methyl donor nutrients affects global DNA methylation in maternal and umbilical cord blood. Among mother-infant pairs in Project Viva, a folate-replete US population, we estimated maternal intakes of vitamin B12, betaine, choline, folate, cadmium, zinc and iron periconceptionally and during the second trimester. We examined associations of these nutrients with DNA methylation, measured as %5-methyl cytosines (%5mC) in Long Interspersed Nuclear Element-1 (LINE-1), in first trimester (n = 830) and second trimester (n = 671) maternal blood and in cord blood at delivery (n = 516). Cord blood methylation was higher for male than female infants {mean [standard deviation (SD)] 84.8 [0.6] vs. 84.4 [0.7]%}. In the multivariable-adjusted model, maternal intake of methyl donor nutrients periconceptionally and during the second trimester of pregnancy was not positively associated with first trimester, second trimester or cord blood LINE-1 methylation. Periconceptional betaine intake was inversely associated with cord blood methylation [regression coefficient = -0.08% (95% confidence interval (CI): -0.14,-0.01)] but this association was attenuated after adjustment for dietary cadmium, which itself was directly associated with first trimester methylation and inversely associated with cord blood methylation. We also found an inverse association between periconceptional choline [-0.10%, 95% CI: -0.17,-0.03 for each SD (~63 mg/day)] and cord blood methylation in males only. In this folate-replete population, we did not find positive associations between intake of methyl donor nutrients during pregnancy and DNA methylation overall, but among males, higher early pregnancy intakes of choline were associated with lower cord blood methylation

    Bibliography

    No full text
    corecore