46 research outputs found

    Critical illness polyneuropathy in ICU patients is related to reduced motor nerve excitability caused by reduced sodium permeability

    Get PDF
    Background: Reduced motor and sensory nerve amplitudes in critical illness polyneuropathy (CIP) are characteristic features described in electrophysiological studies and due to dysfunction of voltage-gated sodium channels. Yet, faulty membrane depolarization as reported in various tissues of critically ill patients may cause reduced membrane excitability as well. The aim of this study was to compare the pathophysiological differences in motor nerve membrane polarization and voltage-gated sodium channel function between CIP patients and critically ill patients not developing CIP during their ICU stay (ICU controls). Methods: ICU patients underwent electrophysiological nerve conduction studies and were categorized as either ICU controls or CIP patients. Subsequently, excitability parameters were recorded as current-threshold relationship, stimulus-response behavior, threshold electrotonus, and recovery of excitability from the abductor pollicis brevis following median nerve stimulation. Results: Twenty-six critically ill patients were enrolled and categorized as 12 ICU controls and 14 CIP patients. When compared to 31 healthy subjects, the ICU controls exhibited signs of membrane depolarization as shown by reduced superexcitability (p = 0.003), depolarized threshold electrotonus (p = 0.007), increased current-threshold relationship (p = 0.03), and slightly prolonged strength-duration time constant. In contrast, the CIP patients displayed a significantly reduced strength-duration time constant (p < 0.0001), which indicates an increased inactivation of voltage-gated sodium channels. Conclusions: Abnormal motor nerve membrane depolarization is a general finding in critically ill patients whereas voltage-gated sodium channel dysfunction is a characteristic of CIP patients

    Impact of brief prewarming on anesthesia-related core-temperature drop, hemodynamics, microperfusion and postoperative ventilation in cytoreductive surgery of ovarian cancer: a randomized trial

    Get PDF
    Background: General (GA)- and epidural-anesthesia may cause a drop in body-core-temperature (BCT(drop)), and hypothermia, which may alter tissue oxygenation (StO(2)) and microperfusion after cytoreductive surgery for ovarian cancer. Cell metabolism of subcutaneous fat- or skeletal muscle cells, measured in microdialysis, may be affected. We hypothesized that forced-air prewarming during epidural catheter placement and induction of GA maintains normothermia and improves microperfusion. Methods: After ethics approval 47 women scheduled for cytoreductive surgery were prospectively enrolled. Women in the study group were treated with a prewarming of 43 °C during epidural catheter placement. BCT (Spot on®, 3 M) was measured before (T(1)), after induction of GA (T(2)) at 15 min (T(3)) after start of surgery, and until 2 h after ICU admission (T(ICU2h)). Primary endpoint was BCT(drop) between T(1) and T(2). Microperfusion-, hemodynamic- and clinical outcomes were defined as secondary outcomes. Statistical analysis used the Mann-Whitney-U- and non-parametric-longitudinal tests. Results: BCT(drop) was 0.35 °C with prewarming and 0.9 °C without prewarming (p < 0.005) and BCT remained higher over the observation period (ΔT(4) = 0.9 °C up to ΔT(7) = 0.95 °C, p < 0.001). No significant differences in hemodynamic parameters, transfusion, arterial lactate and dCO(2) were measured. In microdialysis the ethanol ratio was temporarily, but not significantly, reduced after prewarming. Lactate, glucose and glycerol after PW tended to be more constant over the entire period. Postoperatively, six women without prewarming, but none after prewarming were mechanical ventilated (p < 0.001). Conclusion: Prewarming at 43 °C reduces the BCT(drop) and maintains normothermia without impeding the perioperative routine patient flow. Microdialysis indicate better preserved parameters of microperfusion. Trial registration: ClinicalTrials.gov; ID: NCT02364219; Date of registration: 18-febr-2015

    The association between frailty and MRI features of cerebral small vessel disease

    Get PDF
    Frailty is a common syndrome in older individuals that is associated with poor cognitive outcome. The underlying brain correlates of frailty are unclear. The aim of this study was to investigate the association between frailty and MRI features of cerebral small vessel disease in a group of non-demented older individuals. We included 170 participants who were classified as frail (n = 30), pre-frail (n = 85) or non-frail (n = 55). The association of frailty and white matter hyperintensity volume and shape features, lacunar infarcts and cerebral perfusion was investigated by regression analyses adjusted for age and sex. Frail and pre-frail participants were older, more often female and showed higher white matter hyperintensity volume (0.69 [95%-CI 0.08 to 1.31], p = 0.03 respectively 0.43 [95%-CI: 0.04 to 0.82], p = 0.03) compared to non-frail participants. Frail participants showed a non-significant trend, and pre-frail participants showed a more complex shape of white matter hyperintensities (concavity index: 0.04 [95%-CI: 0.03 to 0.08], p = 0.03; fractal dimensions: 0.07 [95%-CI: 0.00 to 0.15], p = 0.05) compared to non-frail participants. No between group differences were found in gray matter perfusion or in the presence of lacunar infarcts. In conclusion, increased white matter hyperintensity volume and a more complex white matter hyperintensity shape may be structural brain correlates of the frailty phenotype

    Lung purinoceptor activation triggers ventilator-induced brain injury

    Get PDF
    OBJECTIVES: Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury. DESIGN: Controlled, human in vitro and ex vivo studies, as well as murine in vivo laboratory studies. SETTING: Research laboratory. SUBJECTS: Wild-type, TRPV4-deficient C57BL/6J mice, 8-10 weeks old. Human postmortem lung tissue and human lung epithelial cell line BEAS-2B. INTERVENTION: Mice subjected to mechanical ventilation were studied using functional MRI to assess hippocampal activity. The effects of lidocaine (a nonselective ion-channel inhibitor), P2X-purinoceptor antagonist (iso-PPADS), or genetic TRPV4 deficiency on hippocampal dopamine-dependent pro-apoptotic signaling were studied in mechanically ventilated mice. Human lung epithelial cells (BEAS-2B) were used to study the effects of mechanical stretch on TRPV4 and P2X expression and activation. TRPV4 levels were measured in postmortem lung tissue from ventilated and nonventilated patients. MEASUREMENTS AND MAIN RESULTS: Hippocampus functional MRI analysis revealed considerable changes in response to the increase in tidal volume during mechanical ventilation. Intratracheal lidocaine, iso-PPADS, and TRPV4 genetic deficiency protected mice against ventilationinduced hippocampal pro-apoptotic signaling. Mechanical stretch in both, BEAS-2B cells and ventilated wild-type mice, resulted in TRPV4 activation and reduced Trpv4 and P2x expression. Intratracheal replenishment of adenosine triphosphate in Trpv4 mice abrogated the protective effect of TRPV4 deficiency. Autopsy lung tissue from ventilated patients showed decreased lung TRPV4 levels compared with nonventilated patients. CONCLUSIONS: TRPV4 mechanosensors and purinergic receptors are involved in the mechanisms of ventilator-induced brain injury. Inhibition of this neural signaling, either using nonspecific or specific inhibitors targeting the TRPV4/adenosine triphosphate/P2X signaling axis, may represent a novel strategy to prevent or treat ventilator-induced brain injury

    Trail making test B in postoperative delirium: a replication study

    Get PDF
    BACKGROUND: The Trail Making Test B (TMT-B) is indicative of cognitive flexibility and several other cognitive domains. Previous studies suggest that it might be associated with the risk of developing postoperative delirium, but evidence is limited and conflicting. We therefore aimed to replicate the association of preoperative TMT-B results with postoperative delirium. METHODS: We included older adults (=65 yr) scheduled for major surgery and without signs of dementia to participate in this binational two-centre longitudinal observational cohort study. Presurgical TMT-B scores were obtained. Delirium was assessed twice daily using validated instruments. Logistic regression was applied and the area under the receiver operating characteristic curve calculated to determine the predictive performance of TMT-B. We subsequently included covariates used in previous studies for consecutive sensitivity analyses. We further analysed the impact of outliers, missing or impaired data. RESULTS: Data from 841 patients were included and of those, 151 (18%) developed postoperative delirium. TMT-B scores were statistically significantly associated with the incidence of postoperative delirium {odds ratio per 10-s increment 1.06 (95% confidence interval [CI] 1.02-1.09), P =0.001}. The area under the receiver operating characteristic curve was 0.60 ([95% CI 0.55-0.64], P <0.001). The association persisted after removing 21 outliers (1.07 [95% CI 1.03-1.07], P <0.001). Impaired or missing TMT-B data (n=88) were also associated with postoperative delirium (odds ratio 2.74 [95% CI 1.71-4.35], P <0.001). CONCLUSIONS: The TMT-B was associated with postoperative delirium, but its predictive performance as a stand-alone test was low. The TMT-B alone is not suitable to predict delirium in a clinical setting

    Postoperative delirium is associated with grey matter brain volume loss

    Get PDF
    Delirium is associated with long-term cognitive dysfunction and with increased brain atrophy. However, it is unclear whether these problems result from or predisposes to delirium. We aimed to investigate preoperative to postoperative brain changes, as well as the role of delirium in these changes over time. We investigated the effects of surgery and postoperative delirium with brain MRIs made before and 3 months after major elective surgery in 299 elderly patients, and an MRI with a 3 months follow-up MRI in 48 non-surgical control participants. To study the effects of surgery and delirium, we compared brain volumes, white matter hyperintensities and brain infarcts between baseline and follow-up MRIs, using multiple regression analyses adjusting for possible confounders. Within the patients group, 37 persons (12%) developed postoperative delirium. Surgical patients showed a greater decrease in grey matter volume than non-surgical control participants [linear regression: B (95% confidence interval) = -0.65% of intracranial volume (-1.01 to -0.29, P < 0.005)]. Within the surgery group, delirium was associated with a greater decrease in grey matter volume [B (95% confidence interval): -0.44% of intracranial volume (-0.82 to -0.06, P = 0.02)]. Furthermore, within the patients, delirium was associated with a non-significantly increased risk of a new postoperative brain infarct [logistic regression: odds ratio (95% confidence interval): 2.8 (0.7-11.1), P = 0.14]. Our study was the first to investigate the association between delirium and preoperative to postoperative brain volume changes, suggesting that delirium is associated with increased progression of grey matter volume loss

    Interleukin 8 in postoperative delirium - preliminary findings from two studies

    Get PDF
    OBJECTIVE: Studies have suggested that inflammation contributes to the pathogenesis of postoperative delirium, but previous results on the proinflammatory cytokine IL-8 in plasma are contradictory. Additionally, a significant fraction of IL-8 is bound to erythrocytes, but the relevance of whole blood IL-8 in delirium has not been studied. In this work, we analyzed the association of postoperative delirium with levels of unbound IL-8 in plasma and levels of IL-8 in whole blood in patients from two studies which were conducted in our department and have not been presented previously. We assessed the prognostic value of whole blood IL-8. METHODS: Plasma/whole blood IL-8 was measured at least once in N ​= ​504 patients preoperatively, on day one (d1) and/or three months after surgery in the BioCog observational study. Whole blood IL-8 was measured in N ​= ​64 patients from the PHYDELIO trial preoperatively, on d1 and d7 after surgery. For the determination of whole blood IL-8, EDTA-preserved blood samples underwent lysis by adding Triton-X100 surfactant. Plasma and whole blood IL-8 levels were assessed with two different immunoassay kits. Delirium was appraised systematically for seven postoperative days according to DSM criteria using two comparable protocols consisting of validated screening tools. RESULTS: Delirium occurred in 25% of BioCog and 14% of PHYDELIO patients. In BioCog, IL-8 was elevated on d1 and in delirious patients. A steeper postoperative increase in delirium was confounded by surgery-related factors. A crescendo-decrescendo pattern of whole blood IL-8 levels was observed in non-delirious patients with a peak on d1. This pattern was more distinct in delirious BioCog patients, but inverted in delirious PHYDELIO patients. Preoperative whole blood IL-8>318.4 ​pg/mL (reference <150 ​pg/mL) had adequate sensitivity (0.79/0.78) and specificity (0.53/0.67) for delirium in both samples. CONCLUSION: Our results contribute to an inflammatory hypothesis of postoperative delirium

    Age of red cells for transfusion and outcomes in patients with ARDS

    Get PDF
    Packed red blood cells (PRBCs), stored for prolonged intervals, might contribute to adverse clinical outcomes in critically ill patients. In this study, short-term outcome after transfusion of PRBCs of two storage duration periods was analyzed in patients with Acute Respiratory Distress Syndrome (ARDS). Patients who received transfusions of PRBCs were identified from a cohort of 1044 ARDS patients. Patients were grouped according to the mean storage age of all transfused units. Patients transfused with PRBCs of a mean storage age ≤ 28 days were compared to patients transfused with PRBCs of a mean storage age > 28 days. The primary endpoint was 28-day mortality. Secondary endpoints included failure-free days composites. Two hundred and eighty-three patients were eligible for analysis. Patients in the short-term storage group had similar baseline characteristics and received a similar amount of PRBC units compared with patients in the long-term storage group (five units (IQR, 3-10) vs. four units (2-8), p = 0.14). The mean storage age in the short-term storage group was 20 (±5.4) days compared with 32 (±3.1) days in the long-term storage group (mean difference 12 days (95%-CI, 11-13)). There was no difference in 28-day mortality between the short-term storage group compared with the long-term storage group (hazard ratio, 1.36 (95%-CI, 0.84-2.21), p = 0.21). While there were no differences in ventilator-free, sedation-free, and vasopressor-free days composites, patients in the long-term storage group compared with patients in the short-term storage group had a 75% lower chance for successful weaning from renal replacement therapy (RRT) within 28 days after ARDS onset (subdistribution hazard ratio, 0.24 (95%-CI, 0.1-0.55), p < 0.001). Further analysis indicated that even a single PRBC unit stored for more than 28 days decreased the chance for successful weaning from RRT. Prolonged storage of PRBCs was not associated with a higher mortality in adults with ARDS. However, transfusion of long-term stored PRBCs was associated with prolonged dependence of RRT in critically ill patients with an ARDS

    Association between genetic variants of the cholinergic system and postoperative delirium and cognitive dysfunction in elderly patients

    Get PDF
    BACKGROUND: Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) are frequent and serious complications after surgery. We aim to investigate the association between genetic variants in cholinergic candidate genes according to the Kyoto encyclopedia of genes and genomes - pathway: cholinergic neurotransmission with the development of POD or POCD in elderly patients. METHODS: This analysis is part of the European BioCog project ( www.biocog.eu ), a prospective multicenter observational study with elderly surgical patients. Patients with a Mini-Mental-State-Examination score ≤ 23 points were excluded. POD was assessed up to seven days after surgery using the Nursing Delirium Screening Scale, Confusion Assessment Method and a patient chart review. POCD was assessed three months after surgery with a neuropsychological test battery. Genotyping was performed on the Illumina Infinium Global Screening Array. Associations with POD and POCD were analyzed using logistic regression analysis, adjusted for age, comorbidities and duration of anesthesia (for POCD analysis additionally for education). Odds ratios (OR) refer to minor allele counts (0, 1, 2). RESULTS: 745 patients could be included in the POD analysis, and 452 in the POCD analysis. The rate of POD within this group was 20.8% (155 patients), and the rate of POCD was 10.2% (46 patients). In a candidate gene approach three genetic variants of the cholinergic genes CHRM2 and CHRM4 were associated with POD (OR [95% confidence interval], rs8191992: 0.61[0.46; 0.80]; rs8191992: 1.60[1.22; 2.09]; rs2067482: 1.64[1.10; 2.44]). No associations were found for POCD. CONCLUSIONS: We found an association between genetic variants of CHRM2 and CHRM4 and POD. Further studies are needed to investigate whether disturbances in acetylcholine release and synaptic plasticity are involved in the development of POD

    Presurgical diffusion metrics of the thalamus and thalamic nuclei in postoperative delirium: a prospective two-centre cohort study in older patients

    Get PDF
    BACKGROUND: The thalamus seems to be important in the development of postoperative delirium (POD) as previously revealed by volumetric and diffusion magnetic resonance imaging. In this observational cohort study, we aimed to further investigate the impact of the microstructural integrity of the thalamus and thalamic nuclei on the incidence of POD by applying diffusion kurtosis imaging (DKI). METHODS: Older patients without dementia (=65 years) who were scheduled for major elective surgery received preoperative DKI at two study centres. The DKI metrics fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and free water (FW) were calculated for the thalamus and - as secondary outcome - for eight predefined thalamic nuclei and regions. Low FA and MK and, conversely, high MD and FW, indicate aspects of microstructural abnormality. To assess patients' POD status, the Nursing Delirium Screening Scale (Nu-DESC), Richmond Agitation Sedation Scale (RASS), Confusion Assessment Method (CAM) and Confusion Assessment Method for the Intensive Care Unit score (CAM-ICU) and chart review were applied twice a day after surgery for the duration of seven days or until discharge. For each metric and each nucleus, logistic regression was performed to assess the risk of POD. RESULTS: This analysis included the diffusion scans of 325 patients, of whom 53 (16.3 %) developed POD. Independently of age, sex and study centre, thalamic MD was statistically significantly associated with POD [OR 1.65 per SD increment (95 %CI 1.17 - 2.34) p = 0.004]. FA (p = 0.84), MK (p = 0.41) and FW (p = 0.06) were not significantly associated with POD in the examined sample. Exploration of thalamic nuclei also indicated that only the MD in certain areas of the thalamus was associated with POD. MD was increased in bilateral hemispheres, pulvinar nuclei, mediodorsal nuclei and the left anterior nucleus. CONCLUSIONS: Microstructural abnormalities of the thalamus and thalamic nuclei, as reflected by increased MD, appear to predispose to POD. These findings affirm the thalamus as a region of interest in POD research
    corecore