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Abstract

Background: Reduced motor and sensory nerve amplitudes in critical illness
polyneuropathy (CIP) are characteristic features described in electrophysiological
studies and due to dysfunction of voltage-gated sodium channels. Yet, faulty
membrane depolarization as reported in various tissues of critically ill patients may
cause reduced membrane excitability as well. The aim of this study was to compare
the pathophysiological differences in motor nerve membrane polarization and
voltage-gated sodium channel function between CIP patients and critically ill
patients not developing CIP during their ICU stay (ICU controls).

Methods: ICU patients underwent electrophysiological nerve conduction studies and
were categorized as either ICU controls or CIP patients. Subsequently, excitability
parameters were recorded as current-threshold relationship, stimulus-response
behavior, threshold electrotonus, and recovery of excitability from the abductor
pollicis brevis following median nerve stimulation.

Results: Twenty-six critically ill patients were enrolled and categorized as 12 ICU
controls and 14 CIP patients. When compared to 31 healthy subjects, the ICU
controls exhibited signs of membrane depolarization as shown by reduced
superexcitability (p = 0.003), depolarized threshold electrotonus (p = 0.007),
increased current-threshold relationship (p = 0.03), and slightly prolonged
strength-duration time constant. In contrast, the CIP patients displayed a
significantly reduced strength-duration time constant (p < 0.0001), which
indicates an increased inactivation of voltage-gated sodium channels.

Conclusions: Abnormal motor nerve membrane depolarization is a general
finding in critically ill patients whereas voltage-gated sodium channel
dysfunction is a characteristic of CIP patients.
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Background
Critically ill patients with systemic inflammatory response syndrome and multiple

organ failure frequently develop muscle weakness due to critical illness myopathy and/

or critical illness polyneuropathy (CIP) [1]. This weakness is caused by failure of muscle

fibers and motor nerves to generate action potentials [2]. One of the primary affections

is loss of membrane excitability [3, 4]. Loss of membrane excitability can either be

caused by pathological membrane depolarization or by inactivation of voltage-gated so-

dium channels. So far, there are no in vivo studies in critically ill patients investigating

these mechanisms. In an animal CIP model, inactivation of motor-nerve voltage-gated

sodium channels was key in loss of membrane excitability [5]. On the other hand, faulty

membrane depolarization was reported in various tissues of critically ill patients includ-

ing muscle fibers, monocytes, and platelet mitochondria [6–8]. Importantly, motor-

neuron excitability testing showed that CIP patients featured membrane depolarization

after their discharge from the ICU [9]. However, membrane polarization in motor

nerves of critically ill patients has received less attention. Moreover, the relationship

between membrane depolarization and motor-nerve excitability in critically ill patients

is poorly defined in general and particularly in CIP patients. This study tested the hy-

pothesis that membrane depolarization is a general feature of critically ill patients,

whereas inactivation of voltage-gated sodium channels is related to loss of membrane

excitability in CIP patients, developing muscle weakness.

Methods
The institutional review board of the Charité approved this study (ISRCTN77569430),

and written informed consent of legal proxies was obtained. We screened ICU patients

requiring mechanical ventilation on three of five consecutive days within the first week.

Conventional nerve conduction studies were performed within 14 days by portable 2-

Channel Keypoint Medtronic equipment (Skovlunde, Denmark) [1]. We performed

sensory and motor nerve conduction studies using surface electrodes as follows: sen-

sory nerve conduction velocity and sensory nerve action potentials of the sural nerve/

median nerve followed by motor nerve conduction velocity and compound muscle

action potential after nerve stimulation of the median/peroneal/tibial nerve (neCMAP).

Nerve conduction studies were categorized according to the normal values of the

neurophysiological laboratory of the Charité. Electromyography was performed to as-

sess spontaneous activity using concentric needle electrodes in the extensor digitorum

communis muscle and tibialis anterior muscles. To assess compound muscle action po-

tential after direct muscle stimulation (dmCMAP), we placed a conventional stimulat-

ing surface electrode longitudinally over the muscle fibers just proximal to the distal

tendon insertion. For recordings of dmCMAP, we used disposable concentric needle

electrodes (length 25 or 37 mm; diameter 0.46 mm) and stimulated the muscle with

gradually increasing strength (from 10 to 100 mA) using pulses of 0.1 ms in a duration

delivered at 1 Hz. The recording electrode was placed 15–50 mm proximal to the

stimulating electrode, guided by a muscle twitch. If there was no twitch visible, the

recording electrode was placed in four different directions in order not to miss small

amplitudes. In cases were no responses were obtained, the muscle was assumed to be

inexcitable. The responses evoked were measured peak to peak. Muscle fiber action

potentials were recorded using filter settings between 500 Hz and 10 kHz. Whenever
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possible, we examined the tibialis anterior muscle in the lower limb and the extensor

digitorum communis muscle in the upper limb. Critical illness myopathy was diagnosed

according to standard criteria, including a dmCMAP of less than <3 mV [10]. CIP was

diagnosed according to standard criteria, including reduced motor and sensory nerve

amplitudes [10]. Pathological spontaneous activity and reduced neCMAP were classi-

fied as unspecific and unable to differentiate between myopathy or neuropathy since it

is a typical finding in both features. Patients without any pathologic features in electro-

physiological testing consistent with myopathy or polyneuropathy were classified as

ICU control.

Patients featuring isolated CIM were not further evaluated. All CIP patients presented

critical illness myopathy criteria in electrophysiological assessment as well. Limb

temperature was kept at >32 °C during electrophysiological exams and during the excit-

ability test.

An automated protocol (Threshold tracking; Qtrac version 28/10/2009; Institute of

Neurology, Queen Square, London, TRONDF) was used to measure excitability param-

eters (current-threshold relationship, stimulus-response relationship, threshold electrot-

onus, and recovery of excitability) within 7 to 10 days after ICU admission [11]. This

multiple excitability protocol assesses motor-nerve threshold following different condi-

tioning stimuli [12]. The median nerve was stimulated with surface electrodes at the

wrist, and motor action potentials were recorded from the abductor pollicis brevis

muscle.

(1) The current-threshold relationship (I/V) was measured with 1-ms pulses following

sub-threshold polarizing currents of a 200-ms duration, which were altered in

steps of 10 % between +50 % (depolarizing) and −100 % (hyperpolarizing) of the

control threshold.

(2) Stimulus-response relationship was generated using current impulses of 0.2 and

1 ms. The peak 1-ms response was used to calculate the target response (set at

40 % of the supramaximal CMAP response). The ratio between stimulus-response

curves of both stimuli was used to calculate rheobase and strength-duration time

constant (SDtc).

(3) Threshold electrotonus (TE) was measured by altering nerve excitability using

prolonged sub-threshold polarizing currents of 100 ms duration set at 40 % of

the control threshold currents and is defined as threshold changes occurring in

response to sub-threshold depolarizing and hyperpolarizing pulses [7, 8]. Finally,

TE will pass a phase of sub-excitability following the depolarizing conditioning

current (=TEd40 (undershoot)) and a phase of superexcitability following the

hyperpolarizing conditioning current (=TEh40 (overshoot)).

(4) The recovery of excitability following a supramaximal conditioning stimulus was

tested at 18 conditioning test intervals, decreasing from 200 to 2 ms in geometric

progression.

Excitability parameters of critically ill patients were matched with data assessed in 31

healthy subjects (age 36 ± 9.5 years).

Data analysis has been carried out by QtracP software (Qtrac version 28/10/2009; In-

stitute of Neurology, Queen Square, London), additionally using the modeling software
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“MEMFIT” included in the QtracP software by Bostock and colleagues to simulate the

threshold tracking data [13–15]. Lab results were recorded during threshold tracking

assessments in the ICU. Potassium administration over the first 2 weeks was averaged

as means per day.

Physical examination of muscle strength was conducted using the Medical Research

Council (MRC) score (range: 0 = no muscle contraction to 5 = normal strength) at

ICU discharge [16]. Whenever possible, we examined three muscles in each limb, in-

cluding the triceps, biceps brachii, and extensor digitorum muscles in the upper limbs

and rectus femoris, the tibialis anterior as well as the gastrocnemius muscles in the

lower limbs, respectively. In case of hindered circumstances (e.g., unilateral or central

paresis, bone fractures, or fixateur externe), the affected muscles where not included in

our MRC results. MRC scores are presented as average muscle strength of the muscles

examined.

Statistical analysis tests were computed by SPSS, Version 19, Copyright© SPSS, Inc.,

Chicago, IL 60606, USA. We conducted non-parametric tests using the Mann-Whitney

test for two independent samples, Kruskal-Wallis test for three or more independent

samples, and Fisher’s test (chi-square test) for qualitative data. In case of small samples,

greater differences in sample sizes, large but unbalanced groups, data sets containing

ties, or sparse data, tests were carried out in an exact version. For analysis of correla-

tions between lab parameters and excitability, we used the Spearman correlation

coefficients.

Results
Eight hundred seventy-four mechanically ventilated patients with a Sequential Organ

Failure Assessment (SOFA) score ≥8 for three consecutive days in the first 5 days on

ICU were screened in this prospective observational study. Eight hundred forty-one pa-

tients did not meet the inclusion criteria, and four patients were excluded from further

analysis since they featured isolated CIM (Fig. 1). We enrolled and classified 26 ICU

patients as either ICU controls (n = 12) or CIP patients (n = 14). Patient’s characteristics

are shown in Table 1. Muscle strength was significantly reduced in the CIP patients

compared to the ICU controls (p = 0.01) (Table1).

Significant differences of excitability parameters (Table 2) between the ICU controls

and healthy subjects [reduced: superexcitability %, (p = 0.003); TEd40(10–20ms), (p = 0.007);

S240 accommodation, (p = 0.006)] indicated membrane depolarization in the ICU con-

trols. When compared to the healthy subjects, the CIP patients showed a different

pathology [reduced: superexcitability %, (p < 0.0001); TEd40(10–20ms); (p < 0.0001); S2
40 ac-

commodation, (p < 0.0001); TEh40(10–20 ms), (p = 0.028); late sub-excitability, (p < 0.0001);

SDtc, (p < 0.0001)], which coincides with an inactivation of voltage-gated sodium chan-

nels. Significant differences between the ICU controls and the CIP patients were ob-

served for SDtc (p = 0.03) and TEd40(10–20ms) (p = 0.002); S240 accommodation (p =

0.021) (Fig. 2a, b).

In the CIP patients, pCO2 (46.4 ± 9.8 versus 36.7 ± 4.8 mmHg; p = 0.009), HCO3

(29.4 ± 6.2 versus 23.8 ± 2.5 mmol/l; p = 0.031), and lactate (12.6 ± 4.8 versus 8.1 ±

2.6 mg/dl; p = 0.006) levels were significantly higher than in those of the ICU controls.

Regarding all ICU patients, elevated pCO2 (p = 0.007) and lactate (p = 0.016) levels were

significantly correlated with membrane depolarization [reduced TEd(10–20 ms), S240
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Fig. 1 Study flow chart

Table 1 Clinical characteristics

ICU controls (n = 12) CIP patients (n = 14) p value

Age (years) 48.4 (11.4) 53.2 (14.8) 0.193

Gender (m/f) 8 / 4 11 / 3 0.66

BMI (kg/m2) on admission 29.6 (4.4) 27.0 (4.7) 0.25

Diagnosis on admission:

ALI/ARDS 2 10 0.011

Sepsis – 2

Intracranial bleeding 7 1

Multiple trauma 2 1

Severe cardiac dysfunction/after resuscitation 1 –

SAPS-II on admission 39.9 (14.5) 56.4 (17.8) 0.027

SOFA max. within ICU stay 11.4 (4) 13.2 (3.9) 0.179

MRC score (mean of 12 muscles assessed) at ICU discharge 4.7 (0.4) 3.1 (0.2) 0.01

ICU survival (yes/no) 11/1 8/5 0.16

ICU length of stay (days) 27.3 (10.8) 42.2 (30.5) 0.347

p value compares ICU control patients versus CIP patients, (Mann-Whitney U/Fischer’s exact test). Values are shown as
mean (SD) or as absolute numbers/%
BMI body mass index, ARDS acute respiratory distress syndrome, ALI acute lung injury, SAPS-II simplified acute physiology
score, SOFA Sequential Organ Failure Assessment, MRC medical research council, ICU length of stay intensive care unit
length of stay.
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accommodation] (Table 3/Fig. 2c). On average, the mean KCl administration was

131 mmol/l in ICU controls and 161 mmol/l in CIP patients (Additional file 1:

Table S2). CIP showed a statistically significant negative correlation between re-

duced sub-excitability and elevated KCl administration. In contrast, ICU controls

showed a direct correlation between increased sub-excitability and elevated KCl ad-

ministration (Fig. 2c).

To help interpret these different changes in critically ill patients, we ran the modeling

software MEMFIT included in the QtracP software [12]. Using MEMFIT, sodium cur-

rents of motor axons were modeled using the voltage clamp data of Schwarz and col-

leagues [13]. Further empirical parameter adjustments were made to improve the fit of

recovery of excitability, SDtc, TE, and current-threshold-relationship in the healthy con-

trols [14]. We ran MEMFIT to get the best fit of data recorded in the ICU controls and

the CIP patients. Excitability measurements of ICU controls where best modeled by a

two fold increase of fast K+ currents (Additional file 2: Figure S1/Table 4), whereas in

the CIP patients, the differences in comparison to healthy controls were best modeled

by a twofold reduction of Na+ permeability (Additional file 3: Figure S2/Table 4).

Table 2 Excitability parameters

Healthy subjects
(n = 31)

ICU controls
(n = 12)

CIP patients
(n = 14)

pa value pb value pc value

Temperature °C 33.94 (1.3) 34.5 (1.8) 34.8 (1.5) 0.399 0.075 0.705

(1) Current/threshold relationship

Resting I/V slope 0.58 (0.01) 0.66 (0.04) 0.63 (0.03) 0.03 0.239 0.728

Minimum I/V slope 0.26 (0.01) 0.28 (0.02) 0.26 (0.02) 0.536 0.781 0.406

Hyperpol. I/V slope 0.4 (0.01) 0.31 (0.05) 0.44 (0.08) 0.225 0.263 0.079

(2) Stimulus response/strength duration

Stimulus 50 % (mA) 4.66 (0.27) 5.52 (1.06) 8.6 (1.21) 0.282 0.001 0.075

SDtc (ms) 0.51 (0.02) 0.56 (0.08) 0.4 (0.07) 0.759 <0.0001 0.03

Rheobase (mA) 3.07 (0.22) 3.97 (0.58) 6.1 (0.87) 0.081 0.002 0.095

Stimulus-response slope 6.39 (0.29) 4.51 (0.51) 4.61 (0.38) 0.004 0.003 1

(3) Threshold electrotonus (%)

TEd40(10–20 ms) 69.97 (1.69) 64.8 (2.04) 44.7 (11.1) 0.007 <0.0001 0.002

TEh40(10–20 ms) −74.15 (1.76) −76.92 (2.67) −66.65 (3.74) 0.841 0.028 0.051

S240 accommodation 24.99 (1.03) 20.1 (1.33) 14.77 (1.97) 0.006 <0.0001 0.021

TEd40(90–100 ms) 45.19 (1.5) 43.59 (1.64) 44.29 (2.58) 0.123 0.17 0.932

TEh40(90–100 ms) −123.42 (3.37) −121.91 (8.76) −110.96 (7.61) 0.862 0.222 0.379

TEh40 overshoot 15.88 (0.84) 14.64 (1.42) 9.39 (1.12) 0.342 <0.0001 0.004

TEd40 undershoot −18.75 (0.74) −17.93 (1.38) −11.58 (1.64) 0.752 0.001 0.009

(4) Recovery of excitability

RPR (ms) 3.06 (0.08) 2.98 (0.45) 3.06 (0.18) 0.874 0.8 0.968

Superexcitability (%) −25.69 (1.09) −17.13 (2.74) −14.39 (2.05) 0.003 <0.0001 0.403

Superexcitability at 7 ms −23.92 (1.19) −15.7 (2.41) −11.05 (1.8) 0.001 <0.0001 0.12

Superexcitability at 5 ms −26.4 (1.17) −17.3 (2.85) −14.46 (2.26) 0.004 <0.0001 0.501

Sub-excitability (%) 14.78 (0.91) 11.8 (1.7) 9.04 (0.92) 0.114 <0.0001 0.106

Values are given as mean ± SE
aHealthy subjects versus ICU control
bHealthy subjects versus CIP patients
cICU control versus CIP patients
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Fig. 2 (See legend on next page.)
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Discussion
By performing motor-nerve excitability tests in critically ill patients during their early

ICU stay, we are the first group to demonstrate in vivo-reduced membrane excitability

related to Na+ channel inactivation in CIP patients. Contrary, the ICU control patients

without CIP showed motor axon membrane depolarization.

Reduced membrane excitability in CIP patients during their ICU stay

Membrane depolarization as indicated by reduced superexcitability, TE, and elevated

SDtc in motor nerve excitability testing has been proposed as the primary, pathological

sign in the CIP patients after ICU discharge [9]. In contrast, we observed significantly

reduced SDtc [beside reduced superexcitability, TE, and sub-excitability] indicating re-

duced membrane excitability. SDtc depends on passive membrane properties, as well as

on voltage-dependent Na+ conductance [17, 18]. Possible explanations for reduced SDtc

in motor axons could be structural changes, membrane hyperpolarization, or persist-

ently decreased Na+ conductance [11, 17, 18]. Structural changes of the motor neurons

are not likely, since nerve conduction velocity was normal and since it has been

reported that biopsies of sensory nerves obtained from patients with CIP show no

structural abnormalities [19]. Membrane hyperpolarization was not evident. We suggest

that a decrease in persistent Na+ conductance accounts for the reduction of SDtc in

CIP patients. This hypothesis is confirmed by modeling our excitability data for CIP

patients. The twofold decrease of Na+ current in CIP patients is in line with a nerve

excitability study of patients with puffer fish—TTX [Na+ channel blocker] intoxication

[17]—where a decrease of Na+ currents by a factor of two accounted for reduced

superexcitability, sub-excitability, and TE and increased SDtc.

Our study confirms that dysfunction of voltage-gated Na+ channels are involved in

the pathomechanism of reduced motor nerve membrane excitability in CIP patients.

(See figure on previous page.)
Fig. 2 a Mean excitability data ± SE for 31 healthy subjects (n = 31, green curve), ICU controls (n = 12, blue
curve), and CIP patients (n = 14, red curve). (1) I/V slope. (2) Stimulus-response relationship. (3) Threshold
electrotonus. (4) Excitability recovery. b Correlation between healthy controls (n = 31, green boxes), ICU
controls (n = 12, blue boxes), and CIP patients (n = 14, red boxes) for superexcitability %, TEd(10–20 ms), S2
accommodation, resting I/V slope, strength-duration time constant, rheobase, sub-excitability, and TEh
(overshoot). Differences between groups are indicated as *p < 0.05; **p < 0.01; ***p < 0.0001. c Correlation
between laboratory parameters and excitability parameters in ICU controls (n = 12) and CIP patients
(n = 14). pCO2 and TEd(10–20 ms) (p = 0.007). KCl mmol/l infusion rate mean/day for the first 14 days on ICU and
sub-excitability. Significant correlation in CIP patients (p = 0.026), contrary to ICU control patients (p = 0.159)

Table 3 Correlation between selected excitability parameters and lab results

pCO2 mmHg HCO3 mmol/l Lactate mg/dl K mmol/l Na mmol/l

SDtc (ms) 0.075 0.41 0.102 0.993 0.543

Rheobase (mA) 0.203 0.875 0.066 0.097 0.728

TEd40(10–20 ms) 0.007** 0.2 0.016* 0.58 0.924

S240 accommodation 0.175 0.215 0.013* 0.475 0.072

Superexcitability % 0.832 0.533 0.396 0.348 0.087

Late sub-excitability % 0.165 0.066 0.664 0.796 0.147

SDtc strength duration time constant, TE threshold electrotonus, RRP relative refractory period, HCO3 bicarbonate
* p values < 0.05; ** p values < 0.01
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This hypothesis is supported by an animal model of CIP describing increased inactiva-

tion of voltage-gated sodium channels as an important contributor to reduced excit-

ability [3]. Voltage-gated Na+ channel inactivation can be impaired by oxidative stress

and endotoxins [20, 21], which coincides with significant elevated pCO2 levels in our

CIP patients group compared to the ICU controls.

Our study also confirms that increased inactivation of voltage-gated Na+ channels

shown in an animal model of CIP [3] causes reduced membrane excitability, which is a

trigger for the development of muscle weakness [2].

Reduced TEd(10–20 ms) and S240 accommodation indicate membrane depolarization

and were correlated with elevated blood lactate concentrations in all patients. As

increased blood lactate concentration is a marker for illness severity in critically ill

patients [22], our results are in line with studies showing that membrane depolarization

in critically ill patients is directly correlated with severity of illness [6–8]. However, fur-

ther studies are needed to elucidate the molecular mechanisms of our observations.

In contrast to our study, Z’Graggen and colleagues observed membrane

depolarization of motor nerves in CIP patients [9]. However, these patients were exam-

ined 2–3 weeks after their ICU stay. According to the study of Haeseler and colleagues,

dysfunction of sodium channels is related to endotoxin levels (LPS), yet patients in the

post intensive care period should feature endotoxin levels close to zero [21]. Moreover,

dysfunction of sodium channels has been reported to be associated with oxidative

stress. Likewise, oxidative stress should be resolved after the ICU stay [20]. These im-

portant differences explain the different findings in the study of Z’Graggen and our

study.

Early changes in membrane excitability during the ICU stay are very likely and

have been shown in muscle as early as 6 h after the onset of porcine fecal peritonitis

[23]. However, due to different excitability examination setups in muscle, it was im-

possible to differentiate between sodium channel dysfunction and/or membrane

depolarization.

K+ currents, sub-excitability, and membrane depolarization

According to the MEMFIT model, an increase in fast K+ currents causes the changes

in the ICU controls. In the healthy subjects, elevated [K+]o causes an increase of K+

current over the membrane, as demonstrated by a decrease in superexcitability [24, 25].

Late sub-excitability is the best indicator of [K+]o from nerve excitability measure-

ments, owing to the activation of slow K+ channels during the action potential [12].

Table 4 MEMFIT results modeling excitability parameters for ICU controls and CIP patients

ICU controls (%) CIP patients (%)

P Na p (%) (percent of persistent Na) 51.87 80.4

P Na N (nodal sodium permeability) 46.37 72.49

G Kf l (internodal fast K conductance) 65.89 74.217

G Kf N (nodal fast K conductance) 57.71 73.52

G Ks N (nodal slow K conductance) 51.56 53.2

I pump NI (pump currents) 31.07 11.6

MEMFIT results modeling ICU controls and CIP patients excitability parameters showing discrepancy in percentage for
sodium and potassium currents between healthy controls and ICU controls as well as healthy controls and CIP patients
(please notice that in the modeling model, only the primary change is reliable)
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But interestingly, even though K+ currents are elevated according to the model, there

is reduced sub-excitability in critically ill patients. Furthermore, we did not find a cor-

relation between [K+]o and superexcitability or late sub-excitability. Interestingly, ele-

vated KCl infusion rates were correlated to reduced late sub-excitability (p = 0.026) in

the CIP patients, the opposite of what we observed in the ICU controls and what has

been shown in the healthy subjects [25]. These paradox findings may be related to in-

stable [K+]o plasma levels in critically ill patients requiring potassium substitution in

order to keep [K+]o plasma concentration within the normal range. Further, it needs to

be mentioned, that changes in sub-excitability/superexcitability are related to local po-

tassium levels which may be different from local potassium levels in healthy subjects

due to poor microcirculation in critically ill patients [26]. The inverse relation between

the ICU controls and the CIP patients may be related to the significantly elevated

pCO2 concentrations in CIP patients which will cause higher intracellular H+ levels

and could finally induce reduced K+ current. It has been shown that prolonged ische-

mia causes membrane depolarization in sensory nerves, correlating with a “paradoxical”

reduction of K+ currents by increasing intracellular acidosis [27]; however, those find-

ings are still a matter of discussion and need further exploration.

Limitations

Our study has limitations. All of our CIP patients featured concomitant critical illness

myopathy, which may have influenced excitability results in motor axons. However,

since conditioning currents applied in stimulus-response and current-threshold rela-

tionships and TE assessments would not be sensed by the innervated muscle fibers,

these data should not have been affected by concomitant myopathy. Due to the ex-

plorative and non-confirmatory study design, we avoid to report a post hoc power ana-

lysis in the paper, as recommended by Hoenig and colleagues [28].

Conclusions
We confirmed previous in vitro findings in vivo, showing that inactivation of motor

axon voltage-gated Na+ channels is the primary contributor of muscle weakness in CIP

patients. Additionally, we provided evidence that abnormal membrane depolarization

in motor axons is a general finding in ICU patients corresponding to illness severity.

Moreover, we observed a paradoxical membrane depolarization related to K+ equilib-

rium that could be related to intracellular acidosis; however, this still needs to be evalu-

ated in future studies.

Additional files

Additional file 1: Table S1. Electrophysiological data. neCMAP, nerve evoked compound muscle action potential
amplitude; SNAP, sensory nerve action potential amplitude; dmCMAP, direct muscle evoked compound muscle
action potential amplitude. p value compares ICU controls versus CIP patients (Mann-Whitney U). Values are given
as mean ± SD. Table S2. Laboratory data p value compares ICU controls with CIP patients. pCO, partial arterial
pressure of carbon dioxide; pO2, partial arterial pressure of oxygen; HCO3, bicarbonate; Na, sodium; K, potassium;
Ca, calcium. (DOC 52 kb)

Additional file 2: Figure S1. MEMFIT data showing best fit of current changes in % for ICU controls. GKfl,
internodal fast K conductance; GKfN, nodal fast K conductance; GKsN, nodal slow K conductance, PNa p (%),
percent of persistent Na; P Na N, nodal sodium permeability; GLkN, nodal leak conductance; IPumpNI, pump
currents; GKsI internodal slow K conductance). (TIF 104 kb)
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Additional file 3: Figure S2. MEMFIT data showing best fit of current changes in % for critical illness
polyneuropathy patients. GKfl, internodal fast K conductance; GKfN, nodal fast K conductance; GKsN, nodal slow K
conductance; PNa p (%), percent of persistent Na; P Na N, nodal sodium permeability; GLkN, nodal leak
conductance; IPumpNI, pump currents; GKsI, internodal slow K conductance). (TIF 112 kb)
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