6 research outputs found

    Measuring proper motions of isolated neutron stars with Chandra

    Get PDF
    The excellent spatial resolution of the Chandra observatory offers the unprecedented possibility to measure proper motions at X-ray wavelength with relatively high accuracy using as reference the background of extragalactic or remote galactic X-ray sources. We took advantage of this capability to constrain the proper motion of RX J0806.4-4123 and RX J0420.0-5022, two X-ray bright and radio quiet isolated neutron stars (INSs) discovered by ROSAT and lacking an optical counterpart. In this paper, we present results from a preliminary analysis from which we derive 2 sigma upper limits of 76 mas/yr and 138 mas/yr on the proper motions of RX J0806.4-4123 and RX J0420.0-5022 respectively. We use these values together with those of other ROSAT discovered INSs to constrain the origin, distance and evolutionary status of this particular group of objects. We find that the tangential velocities of radio quiet ROSAT neutron stars are probably consistent with those of 'normal' pulsars. Their distribution on the sky and, for those having accurate proper motion vectors, their possible birth places, all point to a local population, probably created in the part of the Gould Belt nearest to the earth.Comment: 8 pages, 3 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Reddening law and interstellar dust properties along Magellanic sight-lines

    Full text link
    This study establishes that SMC, LMC and Milky Way extinction curves obey the same extinction law which depends on the 2200A bump size and one parameter, and generalizes the Cardelli, Clayton and Mathis (1989) relationship. This suggests that extinction in all three galaxies is of the same nature. The role of linear reddening laws over all the visible/UV wavelength range, particularly important in the SMC but also present in the LMC and in the Milky Way, is also highlighted and discussed.Comment: accepted for publication in Astrophysics and Space Science. 16 pages, 12 figures. Some figures are colour plot

    Multiwavelength Studies of Young OB Associations

    Full text link
    We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters are real in the sense that the stars in the core formed after the cluster halo. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Direct evidence for subcluster merging is still unconvincing. Long-lived, asynchronous star formation is pervasive across MSFRs.Comment: 22 pages, 9 figures. To appear in "The Origin of Stellar Clusters", edited by Steven Stahler, Springer, 2017, in pres

    Cluster Density and the IMF

    Full text link
    Observed variations in the IMF are reviewed with an emphasis on environmental density. The remote field IMF studied in the LMC by several authors is clearly steeper than most cluster IMFs, which have slopes close to the Salpeter value. Local field regions of star formation, like Taurus, may have relatively steep IMFs too. Very dense and massive clusters, like super star clusters, could have flatter IMFs, or inner-truncated IMFs. We propose that these variations are the result of three distinct processes during star formation that affect the mass function in different ways depending on mass range. At solar to intermediate stellar masses, gas processes involving thermal pressure and supersonic turbulence determine the basic scale for stellar mass, starting with the observed pre-stellar condensations, and they define the mass function from several tenths to several solar masses. Brown dwarfs require extraordinarily high pressures for fragmentation from the gas, and presumably form inside the pre-stellar condensations during mutual collisions, secondary fragmentations, or in disks. High mass stars form in excess of the numbers expected from pure turbulent fragmentation as pre-stellar condensations coalesce and accrete with an enhanced gravitational cross section. Variations in the interaction rate, interaction strength, and accretion rate among the primary fragments formed by turbulence lead to variations in the relative proportions of brown dwarfs, solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy, May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla, and H. Zinnecke
    corecore