6,443 research outputs found
The investigation of fibre reinforcement effects in thermoplastic materials: interfacial bond strength and fibre end parameter
Glass fibres used in the manufacture of fibre reinforced thermoplastic composites (FRTP) are normally sized with a film former which includes a silane coupling agent to improve the interfacial bond strength between glass fibre and matrix . However, during composite failure even an optimized interface cannot stop the initia tion of cracks at the fibre ends, which can lead to large transverse cracks in the matrix or failure by fibre pull-out. In order to help better understand the failure mechanisms of FRTP, thermoplastic microbond tests and photoelasticity experiments have been used to study the interface in model single fibre composites
Hole-Clump Pair Creation in the Evolution of Energetic Particle Driven Geodesic Acoustic Mode
Seed dimorphism nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.
Background: Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects.Results: Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity.Conclusions: Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. © 2012 Wang et al.; licensee BioMed Central Ltd
Repulsion and attraction in high Tc superconductors
The influence of repulsion and attraction in high-Tc superconductors to the
gap functions is studied. A systematic method is proposed to compute the gap
functions using the irreducible representations of the point group. It is found
that a pure s-wave superconductivity exists only at very low temperatures, and
attractive potentials on the near shells significantly expand the gap functions
and increase significantly the critical temperature of superconductivity. A
strong on-site repulsion drives the gap into a gap. It is
expected that superconductivity with the symmetry reaches a high
critical temperature due to the cooperation of the on-site and the next-nearest
neighbor attractions.Comment: 4 pages, 5figure
A nonextensive approach to Bose-Einstein condensation of trapped interacting boson gas
In the Bose-Einstein condensation of interacting atoms or molecules such as
87Rb, 23Na and 7Li, the theoretical understanding of the transition temperature
is not always obvious due to the interactions or zero point energy which cannot
be exactly taken into account. The S-wave collision model fails sometimes to
account for the condensation temperatures. In this work, we look at the problem
within the nonextensive statistics which is considered as a possible theory
describing interacting systems. The generalized energy Uq and the particle
number Nq of boson gas are given in terms of the nonextensive parameter q. q>1
(q<1) implies repulsive (attractive) interaction with respect to the perfect
gas. The generalized condensation temperature Tcq is derived versus Tc given by
the perfect gas theory. Thanks to the observed condensation temperatures, we
find q ~ 0.1 for 87Rb atomic gas, q ~ 0.95 for 7Li and q ~ 0.62 for 23Na. It is
concluded that the effective interactions are essentially attractive for the
three considered atoms, which is consistent with the observed temperatures
higher than those predicted by the conventional theory
Impurity and interface bound states in and superconductors
Motivated by recent discoveries of novel superconductors such as
NaCoOHO and SrRuO, we analysize features of
quasi-particle scattering due to impurities and interfaces for possible gapful
and Cooper pairing. A bound state appears near
a local impurity, and a band of bound states form near an interface. We
obtained analytically the bound state energy, and calculated the space and
energy dependent local density of states resolvable by high-resolution scanning
tunnelling microscopy. For comparison we also sketch results of impurity and
surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure
Finite temperature properties of the 2D Kondo lattice model
Using recently developed Lanczos technique we study finite-temperature
properties of the 2D Kondo lattice model at various fillings of the conduction
band. At half filling the quasiparticle gap governs physical properties of the
chemical potential and the charge susceptibility at small temperatures. In the
intermediate coupling regime quasiparticle gap scales approximately linearly
with Kondo coupling. Temperature dependence of the spin susceptibility reveals
the existence of two different temperature scales. A spin gap in the
intermediate regime leads to exponential drop of the spin susceptibility at low
temperatures. Unusual scaling of spin susceptibility is found for temperatures
above 0.6 J. Charge susceptibility at finite doping reveals existence of heavy
quasiparticles. A new low energy scale is found at finite doping.Comment: REVTeX, 7 pages, 7 figure
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
Multipartite entangled coherent states
We propose a scheme for generating multipartite entangled coherent states via
entanglement swapping, with an example of a physical realization in ion traps.
Bipartite entanglement of these multipartite states is quantified by the
concurrence. We also use the --tangle to compute multipartite entanglement
for certain systems. Finally we establish that these results for entanglement
can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the
generation of multipartite entangled coherent states and multipartite
entangelemen
Marginal Fermi liquid analysis of 300 K reflectance of Bi2Sr2CaCu2O8+x
We use 300 K reflectance data to investigate the normal-state electrodynamics
of the high temperature superconductor BiSrCaCuO
over a wide range of doping levels. The data show that at this temperature the
free carriers are coupled to a continuous spectrum of fluctuations. Assuming
the Marginal Fermi Liquid (MFL) form as a first approximation for the
fluctuation spectrum, the doping-dependent coupling constant can
be estimated directly from the slope of the reflectance spectrum. We find that
decreases smoothly with the hole doping level, from underdoped
samples with ( K) where to overdoped
samples with , ( K) where . An analysis of
the intercept and curvature of the reflectance spectrum shows deviations from
the MFL spectrum symmetrically placed at the optimal doping point . The
Kubo formula for the conductivity gives a better fit to the experiments with
the MFL spectrum up to 2000 cm and with an additional Drude component or
an additional Lorentz component up to 7000 cm. By comparing three
different model fits we conclude that the MFL channel is necessary for a good
fit to the reflectance data. Finally, we note that the monotonic variation of
the reflectance slope with doping provides us with an independent measure of
the doping level for the Bi-2212 system.Comment: 11 pages, 11 figure
- …
