10 research outputs found

    Role of the placenta in developmental programming: Observations from models using large animals

    Get PDF
    Developmental programming, which proposes that “insults” or “stressors” during intrauterine or postnatal development can have not only immediate but also long-term consequences for healthy and productivity, has emerged as a major biological principle, and based on studies in many animal species also seems to be a universal phenomenon. In eutherians, the placenta appears to be programmed during its development, which has consequences for fetal growth and development throughout pregnancy, and likewise has long-term consequences for postnatal development, leading to programming of organ function of the offspring even into adulthood. This review summarizes our current understanding of the placenta’s role in developmental programming, the mechanisms involved, and the challenges remaining

    Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East : vertical peak ground acceleration and spectral acceleration

    Get PDF
    This article presents equations for the estimation of vertical strong ground motions caused by shallow crustal earthquakes with magnitudes M w 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is similar to that observed for horizontal motions and is not large and corresponds to factors between 0.7 (normal and odd) and 1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.1 over those on rock sites

    Assessment of the \u3ci\u3ein vivo\u3c/i\u3e genotoxicity of isomers of dinitrotoluene using the alkaline Comet and peripheral blood micronucleus assays

    Get PDF
    Dinitrotoluene (DNT) is a nitroaromatic explosive that exists as six isomers; two major isomers (2,4- and 2,6-DNT) and four minor isomers (2,3-, 2,5-, 3,4-, and 3,5-DNT). DNT has been found in soil, surface water, and groundwater near ammunition production plants. The major isomers of DNT are classified as “likely to cause cancer in humans.” In vitro studies have provided conflicting data regarding the genotoxicity of the minor isomers. Studies indicate that metabolism in the gut and liver are necessary to convert DNT to genotoxic compounds. As such, in the present study the genotoxicity of isomers of DNT was assessed using two in vivo genotoxicity assays. The Comet assay was used to detect DNA damage in liver cells from male Sprague-Dawley rats following oral exposure (14-day) to individual isomers of DNT. The micronucleus assay was conducted using flow cytometric analysis to detect chromosomal damage in peripheral blood. Treatment with 2,3-, 3,4-, 2,4-, 2,5- and 3,5-DNT did not induce DNA damage in liver cells or increase the frequency of micronucleated reticulocytes (MN-RET) in peripheral blood at the doses tested. Treatment with 2,6-DNT induced DNA damage in liver tissue at all doses tested, but did not increase the frequency of micronucleated reticulocytes (MN-RET) in peripheral blood. Thus, 2,4-DNT and the minor isomers were not genotoxic under these test conditions, while 2,6-DNT was genotoxic in the target tissue, the liver. These results support previous research which indicated that the hepatocarcinogenicity of technical grade DNT (TG-DNT) could be attributed to the 2,6-DNT isomer

    Chromosomal interchanges in plants

    No full text
    corecore