581 research outputs found
New South Wales Vegetation Classification and Assessment : part 1, plant communities of the NSW Western Plains
For the Western Plains of New South Wales, 213 plant communities are classified and described and their protected area and threat status assessed. The communities are listed on the NSW Vegetation Classification and Assessment database (NSWVCA). The full description of the communities is placed on an accompanying CD together with a read-only version of the NSWVCA database.
The NSW Western Plains is 45.5 million hectares in size and covers 57% of NSW. The vegetation descriptions are based on over 250 published and unpublished vegetation surveys and maps produced over the last 50 years (listed in a bibliography), rapid field checks and the expert knowledge on the vegetation. The 213 communities occur over eight Australian bioregions and eight NSW Catchment Management Authority areas. As of December 2005, 3.7% of the Western Plains was protected in 83 protected areas comprising 62 public conservation reserves and 21 secure property agreements. Only one of the eight bioregions has greater than 10% of its area represented in protected areas. 31 or 15% of the communities are not recorded from protected areas. 136 or 64% have less than 5% of their pre-European extent in protected areas. Only 52 or 24% of the communities have greater than 10% of their original extent protected, thus meeting international guidelines for representation in protected areas. 71 or 33% of the plant communities are threatened, that is, judged as being âcritically endangeredâ, âendangeredâ or âvulnerableâ.
While 80 communities are recorded as being of âleast concernâ most of these are degraded by lack of regeneration of key species due to grazing pressure and loss of top soil and some may be reassessed as being threatened in the future. Threatening processes include vegetation clearing on higher nutrient soils in wetter regions, altered hydrological regimes due to draw-off of water from river systems and aquifers, high continuous grazing pressure by domestic stock, feral goats and rabbits, and in some places native herbivores â preventing regeneration of key plant species, exotic weed invasion along rivers and in fragmented vegetation, increased salinity, and over the long term, climate change.
To address these threats, more public reserves and secure property agreements are required, vegetation clearing should cease, re-vegetation is required to increase habitat corridors and improve the condition of native vegetation, environmental flows to regulated river systems are required to protect inland wetlands, over-grazing by domestic stock should be avoided and goat and rabbit numbers should be controlled and reduced. Conservation action should concentrate on protecting plant communities that are threatened or are poorly represented in protected areas
The Growth of Black Holes and Bulges at the Cores of Cooling Flows
Central cluster galaxies (cDs) in cooling flows are growing rapidly through
gas accretion and star formation. At the same time, AGN outbursts fueled by
accretion onto supermassive black holes are generating X-ray cavity systems and
driving outflows that exceed those in powerful quasars. We show that the
resulting bulge and black hole growth follows a trend that is roughly
consistent with the slope of the local (Magorrian) relation between bulge and
black hole mass for nearby quiescent ellipticals. However, a large scatter
suggests that cD bulges and black holes do not always grow in lock-step. New
measurements made with XMM, Chandra, and FUSE of the condensation rates in
cooling flows are now approaching or are comparable to the star formation
rates, alleviating the need for an invisible sink of cold matter. We show that
the remaining radiation losses can be offset by AGN outbursts in more than half
of the systems in our sample, indicating that the level of cooling and star
formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P.
Schuecker, G. W. Pratt, and A. Finogueno
Investigating the Effect of the Environment on Prey Detection Ability in Humans.
Visual search experiments used in the field of psychology may be applied to investigate the relationship between environments and prey detection rates that could influence hunting behaviours in ancient humans. Two lab-based experiments were designed to examine the effects of differing virtual environments, representing Marine Isotope Stage 3 (MIS3) in Europe, on participants' ability to locate prey. The results show that prey detection performance is highly influenced by vegetation structure, both in terms of the biome type (wooded vs. grassland environments) and the density of the vegetation (trees in wooded and shrubs in grassland environments). However, the density of vegetation has a greater relative effect in grassland than in wooded biomes. Closer examination of the transition between biomes (relative percentages of trees vs. shrubs) at the same vegetative density shows a non-linear relationship between prey detection performance and the relative tree to shrub percentages. Changes in the distribution of biomes occurred throughout the Quaternary. The composition of those biomes will have likely affected hominin hunting behaviours because of their intermediary effects on prey detection performance. This may, therefore, have played a role in the turn-overs of hunter-gatherer hominin populations during MIS3 and at other times in the Quaternary
Prognostic significance of early recurrence: a conditional survival analysis in patients with resected colorectal liver metastasis
AbstractBackgroundFor patients undergoing liver resection for colorectal metastases, specific clinicoâpathological variables have been shown to be prognostic at baseline. This study analyses how the prognostic capability of these variables changes in a conditional survival model.MethodsRetrospective review of a prospectively maintained database of patients who underwent an R0 resection of colorectal liver metastases from 1994 to 2004 at a single institution.ResultsIn total, 807 patients were identified, with an 87âmonth median followâup for survivors. Fiveâ and 10âyear diseaseâspecific survivals (DSS) were 68% and 55%, respectively. The probability of further survival increased as the survival time increased. For 3âyear survivors (n = 504), DSS were no longer significantly different between patients with a low (0â2) or high (3â5) clinical risk score (CRS, P = 0.19). On multivariate analysis, independent predictors of DSS for 3âyear survivors were recurrence within the first 3 years after a liver resection, a preâoperative carcinoembryonic antigen (CEA) >200âng/ml and diseaseâfree interval <12 months prior to the diagnosis of liver metastasis. However, for those patients who were recurrence free at 1 year, no clinicoâpathological variables retained prognostic significance.DiscussionAfter 3 years of DSS and 1 year of recurrenceâfree survival, baseline clinicoâpathological variables have a limited ability to predict future survival. Early postâoperative recurrence appears to be the most useful single clinical feature in estimating conditional DSS
Non-Fermi liquid behavior and scaling of low frequency suppression in optical conductivity spectra of CaRuO
Optical conductivity spectra of paramagnetic CaRuO are
investigated at various temperatures. At T=10 K, it shows a non-Fermi liquid
behavior of , similar to the case
of a ferromagnet SrRuO. As the temperature () is increased, on the other
hand, in the low frequency region is progressively
suppressed, deviating from the 1/{\omega}^{\frac 12%}-dependence.
Interestingly, the suppression of is found to scale with
at all temperatures. The origin of the scaling
behavior coupled with the non-Fermi liquid behavior is discussed.Comment: 4 pages, 3 figure
Can inflationary models of cosmic perturbations evade the secondary oscillation test?
We consider the consequences of an observed Cosmic Microwave Background (CMB)
temperature anisotropy spectrum containing no secondary oscillations. While
such a spectrum is generally considered to be a robust signature of active
structure formation, we show that such a spectrum {\em can} be produced by
(very unusual) inflationary models or other passive evolution models. However,
we show that for all these passive models the characteristic oscillations would
show up in other observable spectra. Our work shows that when CMB polarization
and matter power spectra are taken into account secondary oscillations are
indeed a signature of even these very exotic passive models. We construct a
measure of the observability of secondary oscillations in a given experiment,
and show that even with foregrounds both the MAP and \pk satellites should be
able to distinguish between models with and without oscillations. Thus we
conclude that inflationary and other passive models can {\em not} evade the
secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements
have been made to the discussion and new data has been included. The
conclusions are unchagne
Cosmology at the Millennium
One hundred years ago we did not know how stars generate energy, the age of
the Universe was thought to be only millions of years, and our Milky Way galaxy
was the only galaxy known. Today, we know that we live in an evolving and
expanding Universe comprising billions of galaxies, all held together by dark
matter. With the hot big-bang model, we can trace the evolution of the Universe
from the hot soup of quarks and leptons that existed a fraction of a second
after the beginning to the formation of galaxies a few billion years later, and
finally to the Universe we see today 13 billion years after the big bang, with
its clusters of galaxies, superclusters, voids, and great walls. The attractive
force of gravity acting on tiny primeval inhomogeneities in the distribution of
matter gave rise to all the structure seen today. A paradigm based upon deep
connections between cosmology and elementary particle physics -- inflation +
cold dark matter -- holds the promise of extending our understanding to an even
more fundamental level and much earlier times, as well as shedding light on the
unification of the forces and particles of nature. As we enter the 21st
century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial
Volume of Reviews of Modern Physic
Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff
In this work we consider the entropy-corrected version of interacting
holographic dark energy (HDE), in the non-flat universe enclosed by apparent
horizon. Two corrections of entropy so-called logarithmic 'LEC' and power-law
'PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The
ratio of dark matter to dark energy densities , equation of state parameter
and deceleration parameter are obtained. We show that the cosmic
coincidence is satisfied for both interacting models. By studying the effect of
interaction in EoS parameter, we see that the phantom divide may be crossed and
also find that the interacting models can drive an acceleration expansion at
the present and future, while in non-interacting case, this expansion can
happen only at the early time. The graphs of deceleration parameter for
interacting models, show that the present acceleration expansion is preceded by
a sufficiently long period deceleration at past. Moreover, the thermodynamical
interpretation of interaction between LECHDE and dark matter is described. We
obtain a relation between the interaction term of dark components and thermal
fluctuation in a non-flat universe, bounded by the apparent horizon. In
limiting case, for ordinary HDE, the relation of interaction term versus
thermal fluctuation is also calculated.Comment: 20 pages, 8 figures, figures changed, some Ref. is added, changed
some sentences, accepted by General relativity and gravitation (GERG
- âŠ