33 research outputs found

    Twisted Backgrounds, PP-Waves and Nonlocal Field Theories

    Full text link
    We study partially supersymmetric plane-wave like deformations of string theories and M-theory on brane backgrounds. These deformations are dual to nonlocal field theories. We calculate various expectation values of configurations of closed as well as open Wilson loops and Wilson surfaces in those theories. We also discuss the manifestation of the nonlocality structure in the supergravity backgrounds. A plane-wave like deformation of little string theory has also been studied.Comment: 46 pages, changed to JHEP forma

    Stöber Silica Particle Size Effect On The Hardness And Brittleness Of Silica Monoliths

    No full text
    Micro-indentation experiments were performed on monoliths prepared by drying dispersions of Stöber silica nano-sized particles in the 15-115 nm diameter range. Monolith hardness and resistance to fracture change gradually: the monoliths made with the smaller particles have smoother surfaces and resist to higher indentation forces while the monoliths made out of the larger particles are very brittle. These differences are assigned to changes in particle microchemistry associated to the differences in particle sizes, evidenced in a previous work from this group: larger particles are more extensively cross-linked and thus less plastic than smaller particles. This is in turn due to a larger amount of non-hydrolyzed ethoxy groups in the smaller particles, which limits the extent of cross-linking and creates domains containing linear siloxane chains that contribute to mechanical energy dissipation and thus to increased monolith tenacity and decreased hardness. Optical and electron microscopy examination of monolith surfaces show a large number of defects at different scales on the monoliths formed by larger particles. Under high magnification in a field-emission scanning electron microscope, larger particles appear less deformed and less densely packed than the smaller particles, thus contributing to lower cohesion energy. These results show a clear connection between the conditions for particle formation, their chemical and morphological features and the resulting mechanical properties of macroscopic solids. © 2007 Elsevier B.V. All rights reserved.30201/03/15371376Stöber, W., Fink, A., Bohn, E., Controlled growth of monodisperse silica spheres in micron size range (1968) J. Colloid Interf. Sci., 26, p. 62Hardikar, V.V., Matijevic, E., Coating of nanosize silver particles with silica (2000) J. Colloid Interf. Sci., 221, p. 133Kobayashi, Y., Katakami, H., Mine, E., Nagao, D., Konno, M., Liz-Marzan, L.M., Silica coating of silver nanoparticles using a modified Stöber method (2005) J. Colloid Interf. Sci., 283, p. 392Pontoni, D., Narayanan, T., Rennie, A.R., Time-resolved SAXS study of nucleation and growth of silica colloids (2002) Langmuir, 18, p. 56Tolnai, G., Csempesz, F., Kabai-Faix, M., Kalman, E., Keresztes, Z., Kovacs, A.L., Ramsden, J.J., Horvolgyi, Z., Preparation and characterization of surface-modified silica-nanoparticles (2001) Langmuir, 17, p. 2683Tissot, I., Reymond, J.P., Lefebvre, F., Bourgeat-Lami, E., SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles (2002) Chem. Mater., 14, p. 1325Green, D.L., Lin, J.S., Lam, Y.F., Hu, M.Z.C., Schaefer, D.W., Harris, M.T., Size, volume fraction, and nucleation of Stöber silica nanoparticles (2003) J. Colloid Interf. Sci., 266, p. 346Liu, J., Pelton, R., Hrymak, A.N., Properties of poly(N-isopropylacrylamide)-grafted colloidal silica (2000) J. Colloid Interf. Sci., 227, p. 408Tianbin, W., Yangchuan, K., Preparation of silica-PS composite particles and their application in PET (2006) Eur. Polym. J., 42, p. 274Ding, X.F., Yu, K.F., Jiang, Y.Q., Hari-Bala, Zhang, H.B., Wang, Z.C., A novel approach to the synthesis of hollow silica nanoparticles (2004) Mater. Lett., 58, p. 3618Graf, C., Vossen, D.L.J., Imhor, A., van Blaaderen, A., A general method to coat colloidal particles with silica (2003) Langmuir, 19, p. 6693Rubio, E., Almaral, J., Ramírez-Bon, R., Castaño, V., Rodríguez, V., Organic-inorganic hybrid coating (poly(methylmethacrylate)/monodisperse silica) (2005) Opt. Mater., 27, p. 1266Monteiro, O.C., Esteves, A.C.C., Trindade, T., The synthesis of SiO2@CdS nanocomposites using single-molecule precursors (2002) Chem. Mater., 14, p. 2900Dhas, N.A., Zaban, A., Gedanken, A., Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties (1999) Chem. Mater., 11, p. 806Kobayashi, M., Skarba, M., Galletto, P., Cakara, D., Borkovec, M., Effects of heat treatment on the aggregation and charging of Stöber-type silica (2005) J. Colloid Interf. Sci., 292, p. 139Oh, M.H., So, J.H., Lee, J.D., Yang, S.M., Preparation of silica dispersion and its phase stability in the presence of salts (1999) Korean J. Chem. Eng., 16, p. 532Iler, R.K., (1979) The Chemistry of Silica, , Wiley, New YorkTakahashi, R., Sato, S., Sodesawa, T., Tomita, Y., Thermal properties of monolithic silica and silica-zirconia with bimodal pore structures (2005) J. Ceram. Soc. Jpn., 113, p. 92Chabanov, A.A., Jun, Y., Norris, D.J., Avoiding cracks in self-assembled photonic band-gap crystals (2004) Appl. Phys. Lett., 84, p. 3573Suratwala, T., Hanna, M.L., Whitman, P., Effect of humidity during the coating of Stöber silica sols (2004) J. Non-Cryst. Solids, 349, p. 368Kim, D.Y., Kowach, G.R., Johnson, D.W., Bhandarkar, S., Du, H., Fabrication of pure silica films for planar optical waveguides using colloidal suspensions (2004) J. Non-Cryst. Solids, 342, p. 18Ohno, T., Suzuki, H., Takahashi, J., Shimada, S., Ota, T., Takahashi, M., Hikichi, Y., Microstructure control of silica thin film by spin coating method (2002) Key Eng. Mater., 206, p. 2185Costa, C.A.R., Leite, C.A.P., Galembeck, F., Size dependence of Stöber silica nanoparticle microchemistry (2003) J. Phys. Chem. B, 107, p. 4747Costa, C.A.R., Leite, C.A.P., Souza, E.F., Galembeck, F., Size effects on the microchemistry and plasticity of Stöber silica particles: a study using EFTEM, FESEM, and AFM-SEPM microscopies (2001) Langmuir, 17, p. 189Leite, C.A.P., de Souza, E.F., Galembeck, F., Core-and-shell nature of Stöber silica particles (2001) J. Braz. Chem. Soc., 12, p. 519Pharr, G.M., Measurement of mechanical properties by ultra-low load indentation (1998) Mater. Sci. Eng., A253, p. 151Oliver, W.C., Pharr, G.M., Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology (2004) J. Mater. Res., 19, p. 3Gall, K., Liu, Y.P., Routkevitch, D., Finch, D.S., Instrumented microindentation of nanoporous alumina films (2006) J. Eng. Mater. Technol., 128, p. 225Lach, R., Kim, G.M., Michler, G.H., Grellmann, W., Albrecht, K., Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites (2006) Macromol. Mater. Eng., 291, p. 263Gerberich, W.W., Mook, W.M., Cordill, M.J., Carter, C.B., Perrey, C.R., Heberlein, J.V., Girshick, S.L., Reverse plasticity in single crystal silicon nanospheres (2005) Int. J. Plasticity, 21, p. 2391Routh, A.F., Russel, W.B., Deformation mechanisms during latex film formation: experimental evidence (2001) Ind. Eng. Chem. Res., 40, p. 430

    Water Vapor Adsorption Effect On Silica Surface Electrostatic Patterning

    No full text
    This work verifies a model for the creation and dissipation of reproducible electric potential patterns on silica surfaces, based on water adsorption, ionization, and ion migration under applied electric potential. Samples were thin silica films grown on silicon wafers and partially covered with sets of parallel gold stripe interdigitated electrodes that are normally used for Kelvin force microscope calibration. Noncontact electric potential measurements with a 20 nm spatial resolution were done using the Kelvin method under controlled atmosphere, in an atomic force microscope (AFM) with a Kelvin force attachment (KFM) mounted within an environmental chamber. Patterns were observed in micrographs acquired while one electrode set was biased and the other was grounded and when both were short-circuited and grounded. Electrostatic charging and discharging are much faster at high relative humidity, showing that the charged or discharged silica states are both changed faster under high humidity, while pattern preservation is effective under low humidity. The results are explained considering surface conductance and the partitioning of water cluster ions both in the solid-gas interfaces and the atmosphere, under the biased electrode potential. © 2008 American Chemical Society.112441719317199Schein, L.B., (2007) Science, 316, p. 1572Schein, L.B., (2007) J. Electrost, 65, p. 613Crowley, J.M., (1999) Fundamentals of applied electrostaticsLaplacian Press: Morgan Hill, p. 40. , CATaylor, D.M., Seeker, P.E., (1994) Industrial electrostatics: Fundamentals and measurements, p. 6. , Research Studies Press: EnglandFrenot, A., Chronakis, I.S., (2003) Curr. Opin. Colloid Interface Sci, 8, p. 64http://www.esdjournal.com, Available atChang, J.I., Cheng-Chung, L., (2006) J. Loss. Prev. Process Indust, 19, p. 51Bailey, A.G., (2001) J. Electrost, 51, p. 82Castle, G.S.P., (1997) J. Electrost, 40, p. 13Németh, E., Albrecht, V., Schubert, G., Simon, F., (2003) J. Electrost, 58, p. 3Masuda, H., Yasuda, D., Ema, A., Tanoue, K., (2004) Kona, 22, p. 168Davidson, J.L., Williams, T.J., Bailey, A.G., Hearn, G.L., (2001) J. Electrost, 51, p. 374Castle, G.S.P., Schein, L.B., (1995) J. Electrost, 36, p. 165Chen, G., Tanaka, Y., Takada, T., Zhong, L., (2004) IEEE Trans. Dielectr. Electr. Insul, 11, p. 113McCarty, L.S., Winkleman, A., Whitesides, G.M., (2007) J. Am. Chem. Soc, 129, p. 4075McCarty, L.S., Whitesides, G.M., (2008) Angew. Chem., Int. Ed, 47, p. 2188Hogue, M.D., Buhler, C.R., Calle, C.I., Matsuyama, T., Luo, W., Groop, E.E., (2004) J. Electrost, 67, p. 259Chen, G., Tay, T.Y.G., Davies, A.E., Tanaka, Y., Takada, T., (2001) IEEE Trans. Dielectr. Electr. Insul, 8, p. 867Bigarré, J., Hourquebie, P., (1999) J. Appl. Phys, 85, p. 7443Duff, N., Lacks, D.J., (2008) J. Electrost, 66, p. 51Choi, K.S., Yamaguma, M., Ohsawa, A., (2007) Jpn. J. Appl. Phys, 46, p. 7861Park, A.A., Fan, L.S., (2007) Chem. Eng. Sci, 62, p. 371Nonnenmcher, M., O'Boyle, M.P., Wickramasinghe, H.K., (1991) Appl. Phys. Lett, 58, p. 2921He, T., Ding, H., Peor, N., Naama, P., Lu, M., Corley, D.A., Chen, B., Tour, J.M., (2008) J. Am. Chem. Soc, 130, p. 1699Cheran, L.E., McGovern, M.E., Thompson, M., (2000) Faraday Discuss, 116, p. 23Li, W., Li, D.Y., (2005) J. Chem. Phys, 122, p. 64708Taylor, D.M., Morris, D., Cambridge, J.A., (2004) Appl. Phys. Lett, 85, p. 5266Cheran, L.E., Liess, H.D., Thompson, M., (1999) Analyst, 124, p. 961Keslarek, A.J., Costa, C.A.R., Galembeck, F., (2001) Langmuir, 17, p. 7886Jankov, I.R., Szente, R.N., Goldman, I.D., Carreno, M.N.P., Valle, M.A., Behar, M., Costa, C.A.R., Landers, R., (2005) Surf. Coating Tech, 200, p. 254Jacobs, H.O., Knapp, H.F., Stemmer, A., (1997) Ultramicroscopy, 69, p. 39Jacobs, H.O., Whitesides, G.M., (2001) Science, 291, p. 1763Barry, C.R., Gu, J., Jacobs, H.O., (2005) Nano Lett, 5, p. 2078Galembeck, A., Costa, C.A.R., Silva, M.C.V.M., Souza, E.F., Galembeck, F., (2001) Polymer, 42, p. 4845Braga, M., Costa, C.A.R., Leite, C.A.P., Galembeck, F., (2001) J. Phys. Chem. B, 105, p. 3005Galembeck, F., Costa, C.A.R., Galembeck, A., Silva, M.C.V.M., (2001) Ann. Acad. Bras. Cienc, 73, p. 495Kin, C., Choi, Y.S., Lee, S.M., Park, J.T., Kim, B., Lee, Y.H., (2002) J. Am. Chem. Soc, 124, p. 9906Gouveia, R.F., Costa, C.A.R., Galembeck, F., (2005) J. Phys. Chem. B, 109, p. 4631Bakos, T., Rashkeev, S.N., Pantelides, S.T., (2004) Phys. Rev. B, 69, p. 195206Jacobs, H.O., Knapp, H.F., Stemmer, A., (1999) Rev. Sci. Instrum, 70, p. 1756Jacobs, H.O., Leuchtmann, P., Homan, O.J., Stemmer, A., (1998) J. Appl. Phys, 84, p. 1168Binning, G., Quate, C.F., Gerber, C., (1986) Phys. Rev. Lett, 56, p. 930Galembeck, F., Costa, C.A.R., (2006) Encyclopedia of Surface and Colloid ScienceDekker Encyclopedias, p. 1874. , New YorkFreund, J., Halbritter, J., Hörber, J.K.H., (1999) Microsc. Res. Tech, 44, p. 327Lee, S., Staehle, R.W., (1996) Corros. Sci, 52, p. 843Luna, M., Colchero, J., Gil, A., Gómez-Herrero, J., Baró, A.M., (2000) Appl. Surf. Sci, 157, p. 393Aplin, K.L., (2005) Rev. Sci. Instrum, 76, p. 104501Jacobs, H.O., Patent application publication (2008), US 2008/0160780Barry, C.R., Kortshagen, U., Jacobs, H.O., (2007) Mater. Res. Soc. Symp. Proc, p. 100Soares, L.C., Bertazzo, S., Burgo, T.A.L., Baldim, V., Galembeck, F., (2008) J. Braz. Soc, 19, p. 277Gomollón, J.A., Palau, R., (2005) IEEE Trans. Power Deliv, 20, p. 919Liu, C., Bard, A.J., (2005) Nat. Mater, 7, p. 50

    Esi-tem Imaging Of Surfactants And Ions Sorbed In Stöber Silica Nanoparticles

    No full text
    The sorption of surfactants and NaCl in silica nanosized particles creates unexpected spatial distributions of solutes that were evidenced by electron spectroscopy imaging in the transmission electron microscope (ESI/TEM). The spectral images show that simple ions (Na+, Cl-, Br -) are actually absorbed within the particles irrespective of their charges, while surfactant chains are adsorbed at the particle surfaces. The expected effect of the surfactants on particle aggregation is also observed in the micrographs. In the case of salt, close-packed silica particle arrays are formed at low ionic strength, but only coarse aggregates form at higher salt concentrations. The particles absorb both Na+ and Cl- ions in similar amounts, from 0.5 mol L-1 NaCl, but Na+ ions are depleted from the particles' immediate outer vicinity, where Cl- ions are in turn accumulated. These results confirm that Stöber silica nanoparticles are highly porous and reveal their potential usefulness as carriers of small molecules and ions, due to the small particle size, exceptional colloidal stability, and this newly found sorption behavior. © 2006 American Chemical Society.221771597166Bjelopavlic, M., Singh, P.K., El-Shall, H., Moudgil, B.M., (2000) J. Colloid Interface Sci., 226, pp. 159-165Pasquato, L., Pengo, P., Scrimin, P., (2005) Supramol. Chem., 17, pp. 163-171Phadtare, S., Vinod, V.P., Wadgaonkar, P.P., Rao, M., Sastry, M., (2004) Langmuir, 20, pp. 3717-3723Piech, M., Walz, J.Y., (2004) J. Phys. Chem. B, 108, pp. 9177-9188Bailey, R.E., Nie, S.M., (2003) J. Am. Chem. Soc., 125, pp. 7100-7106Manciu, F.S., Tallman, R.E., McCombe, B.D., Weinstein, B.A., Lucey, D.W., Sahoo, Y., Prasad, P.N., (2005) Phys. E, 26, pp. 14-18Lu, S.W., Sohling, U., Mennig, M., Schmidt, H., (2002) Nanotechnology, 13, pp. 669-673Caruso, F., Lichtenfelf, H., Giersig, M., Möhwald, H., (1998) J. Am. Chem. Soc., 120, pp. 8523-8524Galembeck, F., Lima, E.C.O., Massen, N.C., Monteiro, V.A.R., Souza, E.F., (1996) Fine Particles Science and Technology: from Micro- to Nanoparticles, pp. 267-279. , Pelizzetti, E., Ed.Kluwer: Dordrecht, The NetherlandsChen, Y., Ford, W.T., Materer, N.F., Teeters, D., (2000) J. Am. Chem. Soc., 122, pp. 10472-10473Pan, G.S., Tse, A.S., Kesavamoorthy, R., Asher, S.A., (1998) J. Am. Chem. Soc., 120, pp. 6518-6524Mori, H., Müller, A.H.E., Klee, J.E., (2003) J. Am. Chem. Soc., 125, pp. 3712-3713Stöber, W., Fink, A., Bohn, E., (1968) J. Colloid Interface Sci., 26, pp. 62-69Hardikar, V.V., Matrjevic, E., (2000) J. Colloid Interface Sci., 227, pp. 133-136Chabanov, A.A., Jun, Y., Norris, D.J., (2004) Appl. Phys. Lett., 84, pp. 3573-3575Pontoni, D., Narayanan, T., Rennie, A.R., (2002) Langmuir, 18, pp. 56-59Green, D.L., Lin, J.S., Lam, Y.F., Hu, M.Z.C., Schaefer, D.W., Harris, M.T., (2003) J. Colloid Interface Sci., 255, pp. 346-358Tolnai, G., Csempesz, F., Kabai-Faix, M., Kalman, E., Keresztes, Z., Kovacs, A.L., Rambsden, J.J., Horvolgyi, Z., (2001) Langmuir, 17, pp. 2683-2687Liu, J., Pelton, R., Hrymak, A.N., (2000) J. Colloid Interface Sci., 227, pp. 408-411Kobayashi, Y., Katakami, H., Mine, E., Nagao, D., Konno, M., Liz-Marzan, L.M., (2005) J. Colloid Interface Sci., 283, pp. 392-396Costa, C.A.R., Leite, C.A.P., Souza, E.F., Galembeck, F., (2001) Langmuir, 17, pp. 189-194Costa, C.A.R., Leite, C.A.P., Galembeck, F., (2003) J. Phys. Chem. B, 107, pp. 4747-4755Leite, C.A.P., Souza, E.F., Galembeck, F., (2001) J. Braz. Chem. Soc., 12, pp. 519-525Iler, R.K., (1979) The Chemistry of Silica, , Wiley. New YorkJain, T.K., Roy, I., De, T.K., Maitra, A., (1998) J. Am. Chem. Soc., 120, pp. 11092-11095Kulak, A., Hall, S.R., Mann, S., (2004) Chem. Commun., 5, pp. 576-577Bauer, D., Buchhammer, H., Fuchs, A., Jaeger, W., Killmann, E., Lunkwitz, K., Rehmet, R., Schwarz, S., (1999) Colloids Surf., A, 156, pp. 291-305Oh, M.H., So, J.H., Lee, J.D., Yang, S.M., (1999) Korean J. Chem. Eng., 16, pp. 532-537Suratwala, T., Hanna, M.L., Whitman, P., (2004) J. Non-cryst. Solids, 349, pp. 368-376Kim, D.Y., Kowach, G.R., Johnson, D.W., Bhandarkar, S., Du, H., (2004) J. Non-cryst. Solids, 342, pp. 18-24Ohno, T., Suzuki, H., Takahashi, J., Shimada, S., Ota, T., Takahashi, M., Hikichi, Y., (2002) Key Eng. Mater., 206, pp. 2185-2188Amalvy, J.I., Percy, M.J., Armes, S.P., Leite, C.A.P., Galembeck, F., (2005) Langmuir, 21, pp. 1175-1179Phan, T.N.T., Louvard, N., Bachiri, S.A., Perselho, J., Foissy, A., (2004) Colloids Surf., 244, pp. 131-140Gabriel, U., Charlet, L., Schlapfer, C.W., Vial, J.C., Brachmann, A., Geipel, G., (2001) J. Colloid Interface Sci., 239, pp. 358-368Dekany, I., Nemeth, J., Szekeres, M., Schoonheydt, R., (2003) Colloid Polym. Sci., 282, pp. 1-6Wang, Z., Friedrich, D.M., Bersersluis, M.R., Hemmer, S.L., Joly, A.G., Huesemann, M.H., Truex, M.I., Peyton, B.M., (2001) Environ. Sci. Technol., 35, pp. 2710-2716Bhosale, S., Wang, T.Y., Li, G.T., Siggel, U., Fuhrhop, J.H., (2004) J. Am. Chem. Soc., 126, pp. 13111-13118Ozkaya, D., Zhou, W., Thomas, I.M., Midgley, P., Keast, V.J., Hermans, S., (1999) Catal. Lett., 60, pp. 113-120Qalembeck, F., Souza, E.F., (1999) Polymer Interfaces and Emulsions, pp. 119-166. , Esumi, K., Ed.Marcel Dekker: New YorkRosemary, M.I., MacLeren, I., Pradeep, T., (2004) Carbon, 42, pp. 2352-2356Rippel, M.M., Leite, C.A.P., Lee, L.T., Galembeck, F., (2005) Colloid Polym. Sci., 283, pp. 570-574Sun, X.H., Li, C.P., Wong, W.K., Wong, N.B., Lee, C.S., Lee, S.T., Leo, B.K., (2002) J. Am. Chem. Soc., 124, pp. 14464-14471Wiacek, A., Chibowski, E., (2000) Colloids Surf., B, 17, pp. 175-190Soltys, A., Lazarz, M., Chibowski, E., (1997) Colloids Surf., A, 127, pp. 163-173Castaing, R., Hennenquin, J.F., Henry, L., Slodzian, G., The magnetic prism as an optical system (1967) Focusing of Charged Particles, pp. 265-293. , Septier, A., Ed.Academic Press: New YorkEgerton, R.F., (1986) Electron Energy-loss Spectroscopy in the Electron Microscope, , Plenum PressNew YorkReimer, L., Zepke, U., Moesch, J., Schulze-Hillert, S., Ross-Messemer, M., Probst, W., Weimer, E., (1992) EELS Spectroscopy: A Reference Handbook of Standard Data for Identification and Interpretation of Electron Energy-loss Spectra and for Generation of Electron Spectroscopic Images, , Carl Zeiss: Oberkochen, GermanyProbst, W., personal communicationJoy, D.C., (1986) Principles of Analytical Electron Microscopy, p. 256. , Plenum Press: New YorkPrinciples of Analytical Electron Microscopy, 50, p. 20Kiraly, Z., Tun, L., Dekany, I., Bean, K., Vincent, B., (1995) Magy. Kem. Foly., 101, pp. 501-510Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H., Nagayama, K., (1992) Langmuir, 8, pp. 3183-3190Cardoso, A.H., Leite, C.A.P., Galembeck, F., (2001) Colloids Surf., A, 181, pp. 49-55Szekeres, M., Tóth, J., Dékány, I., (2002) Langmuir, 18, pp. 2678-2685Goncalves, M.D., Marques, G.D.S., Galembeck, F., (1983) Sep. Sci. Technol., 18, pp. 893-904Wiese, H., Rupaner, R., (1999) Colloid Polym. Sci., 277, pp. 372-375Kazakov, S.V., Kaholek, M., (2002) Proc. SPIE Int. Soc. Opt. Eng., 4695, pp. 42-51Lee, L.-T., Leite, C.A.P., Galembeck, F., (2004) Langmuir, 20, pp. 4430-4435Galembeck, F., Costa, C.A.R., Galembeck, A., Silva, M.D.C.V.M., (2001) An. Acad. Bras. Ciênc., 73, pp. 495-51

    Local Stiffness In Nylon 6/rubber Blends Determined By Digital Pulsed Force Mode-spm

    No full text
    The incorporation of soft rubber into a thermoplastic matrix can lead to tough blends. Generally, such binary blends are immiscible and exhibit poor mechanical properties caused by the unfavorable interactions between the two phases. Thus, there is an enormous interest in polymer blend compatibility to improve the properties of the polymer blends by the addition of an appropriate compatibilizer. Copyright 2005, LASPM.11SUPPL. 3134137Carone Jr., E., (2000) Polymer, 41, p. 5929Okada, O., (2000) Polymer, 41, p. 8061Machado, A.V., (2001) J. Appl. Polym. Sci., 80, p. 1535Araujo, E.M., (2003) J. Appl. Polym. Sci., 90, p. 2643Wu, D., (2004) Eur. Polymer J., 40, p. 1223Harada, T., (1999) Polymer, 40, p. 3957Oshinski, A.J., (1992) Polymer, 33, p. 268Sawyer, L.C., Grubb, D.T., (1987) Polymer Microscopy, , Chapman and Hall, LondonCosta, C.A.R., (2002) Polímeros: Ciência e Tecnologia, 12, p. 188Zhang, H., (2000) Langmuir, 16, p. 9294Krotil, H.U., (1999) Surf. Interface Anal., 27, p. 336Borggreve, R.J.M., (1989) Polymer, 30, p. 78not
    corecore