52 research outputs found

    Deleting titin's C-terminal PEVK exons increases passive stiffness, alters splicing, and induces cross-sectional and longitudinal hypertrophy in skeletal muscle

    Get PDF
    The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219–225 deleted, the Ttn(Δ219–225) model (MGI: Ttn(TM 2.1Mgot)). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by ∼17% (sarcomere length 3.0 μm). In contrast, measured passive tension (sarcomere length 3.0 μm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in Ttn(Δ219–225) muscles: a larger isoform that represents the Ttn(Δ219–225) N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in Ttn(Δ219–225) soleus muscle (WT 240 ± 9; Ttn(Δ219–225) 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; Ttn(Δ219–225) 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. Ttn(Δ219–225) mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219–225 have high passive tension, due in part to alterations elsewhere in splicing of titin’s spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin’s C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity

    Diaphragm dysfunction in COPD - Involvement of the myofilaments

    No full text
    Contains fulltext : 50641.pdf (Publisher’s version ) (Open Access)RU Radboud Universiteit Nijmegen, 19 april 2006Promotor : Dekhuijzen, P.N.R. Co-promotor : Heunks, L.M.A.152 p

    Role of Titin in Skeletal Muscle Function and Disease

    No full text

    Mitochondrial Respiration and Passive Stretch of the Diaphragm During Unilateral Phrenic Nerve Stimulation

    No full text

    Lifting the Nebula: Novel Insights into Skeletal Muscle Contractility

    No full text

    Diaphragm muscle fiber dysfunction in chronic obstructive pulmonary disease: toward a pathophysiological concept.

    No full text
    Contains fulltext : 51917.pdf (publisher's version ) (Closed access)Inspiratory muscle weakness in patients with chronic obstructive pulmonary disease (COPD) is of major clinical relevance; maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm shortening. However, more recently, invasive evaluation of diaphragm contractile function, structure, and biochemistry demonstrated that cellular and molecular alterations occur, of which several can be considered of pathologic nature. Although the fiber-type shift toward oxidative type I fibers in COPD diaphragm is regarded as beneficial, rendering the overloaded diaphragm more resistant to fatigue, the reduction of diaphragm fiber force generation in vitro likely contributes to diaphragm weakness. The reduced diaphragm force generation at single-fiber level is associated with loss of myosin content. Moreover, the diaphragm in COPD is exposed to oxidative stress and sarcomeric injury. The current Pulmonary Perspective postulates that the oxidative stress and sarcomeric injury activate proteolytic machinery, leading to contractile protein wasting and, consequently, loss of force-generating capacity of diaphragm fibers in patients with COPD. Interestingly, several of these presumed pathologic alterations are already present early in the course of the disease (GOLD I/II), although these patients do not appear to be limited in their daily-life activities. Therefore, investigating in vivo diaphragm function in mild to moderate COPD should be the focus of future research. Treatment of diaphragm dysfunction in COPD is complex because its etiology is unclear, but recent findings show promise for the use of proteasome inhibitors in syndromes associated with muscle wasting, such as the diaphragm in COPD

    Titin N2A: More than a signaling node?

    No full text
    Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Hypoxia-induced skeletal muscle fiber dysfunction: role for reactive nitrogen species.

    No full text
    Hypoxia impairs skeletal muscle function, but the precise mechanisms are incompletely understood. In hypoxic rat diaphragm muscle, generation of peroxynitrite is elevated. Peroxynitrite and other reactive nitrogen species have been shown to impair contractility of skinned muscle fibers, reflecting contractile protein dysfunction. We hypothesized that hypoxia induces contractile protein dysfunction and that reactive nitrogen species are involved. In addition, we hypothesized that muscle reoxygenation reverses contractile protein dysfunction. In vitro contractility of rat soleus muscle bundles was studied after 30 min of hyperoxia (Po2 approximately 90 kPa), hypoxia (Po2 approximately 5 kPa), hypoxia + 30 microM N(G)-monomethyl-L-arginine (L-NMMA, a nitric oxide synthase inhibitor), hyperoxia + 30 microM L-NMMA, and hypoxia (30 min) + reoxygenation (15 min). One part of the muscle bundle was used for single fiber contractile measurements and the other part for nitrotyrosine detection. In skinned single fibers, maximal Ca2+-activated specific force (Fmax), fraction of strongly attached cross bridges (alphafs), rate constant of force redevelopment (ktr), and myofibrillar Ca2+ sensitivity were determined. Thirty minutes of hypoxia reduced muscle bundle contractility. In the hypoxic group, single fiber Fmax, alphafs, and ktr were significantly reduced compared with hyperoxic, L-NMMA, and reoxygenation groups. Myofibrillar Ca2+ sensitivity was not different between groups. Nitrotyrosine levels were increased in hypoxia compared with all other groups. We concluded that acute hypoxia induces dysfunction of skinned muscle fibers, reflecting contractile protein dysfunction. In addition, our data indicate that reactive nitrogen species play a role in hypoxia-induced contractile protein dysfunction. Reoxygenation of the muscle bundle partially restores bundle contractility but completely reverses contractile protein dysfunction
    • …
    corecore