9 research outputs found

    Is the destruction or removal of atmospheric methane a worthwhile option?

    Get PDF
    Removing methane from the air is possible, but do the costs outweigh the benefits? This note explores the question of whether removing methane from the atmosphere is justifiable. Destruction of methane by oxidation to CO2 eliminates 97% of the warming impact on a 100-yr time scale. Methane can be oxidized by a variety of methods including thermal or ultraviolet photocatalysis and various processes of physical, chemical or biological oxidizers. Each removal method has energy costs (with the risk of causing embedded CO2 emission that cancel the global warming gain), but in specific circumstances, including settings where air with high methane is habitually present, removal may be competitive with direct efforts to cut fugitive methane leaks. In all cases however, great care must be taken to ensure that the destruction has a net positive impact on the total global warming, and that the resources required would not be better used for stopping the methane from being emitted

    Expected proton signal sizes in the PRaVDA Range Telescope for proton Computed Tomography

    Get PDF
    Proton radiotherapy has demonstrated benefits in the treatment of certain cancers. Accurate measurements of the proton stopping powers in body tissues are required in order to fully optimise the delivery of such treaments. The PRaVDA Consortium is developing a novel, fully solid state device to measure these stopping powers. The PRaVDA Range Telescope (RT), uses a stack of 24 CMOS Active Pixel Sensors (APS) to measure the residual proton energy after the patient. We present here the ability of the CMOS sensors to detect changes in the signal sizes as the proton traverses the RT, compare the results with theory, and discuss the implications of these results on the reconstruction of proton tracks

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Ecosystem services of wetlands: pathfinder for a new paradigm

    No full text
    Ecosystem services are natural assets produced by the environment and utilized by humans, such as clean air, water, food and materials and contributes to social and cultural well-being. This concept, arguably, has been developed further in wetlands than any other ecosystem. Wetlands were historically important in producing the extensive coal deposits of the Carboniferous period; key steps in human development took place in communities occupying the wetland margins of rivers, lakes and the sea; and wetlands play a key role in the hydrological cycle influencing floods and river droughts. In this paper we examine three pillars that support the wetland research agenda: hydrology, wetland origins and development, and linkages to society. We investigate these through an overview of the evolution of wetland science and assessment of the wide range of topics relating to ecosystem services covered in this Special Issue. We explain the seminal change in how modern society values the benefits of natural ecosystems and highlights the pathfinder role that wetland research has played in the paradigm shift

    Neutral current and day night measurements from the pure D2O phase of SNO

    No full text
    The Sudbury Neutrino Observatory is a 1000 T D2O Cerenkov detector that is sensitive to 8B solar neutrinos. The energy, radius, and direction with respect to the sun is measured for each neutrino event; these distributions are used to separately determine the rates of the charged current, neutral current and electron scattering reactions of neutrinos on deuterium. Assuming an undistorted 8B spectrum, the νe component of the 8B solar flux is φe = 1.76-0.05 +0.05 (stat. -0.09 +0.09 (syst.) × 106 cm-2s-1 based on events with a measured kinetic energy above 5 MeV. The non-νe component is φμτ = 3.41-0.45 +0.45 (stat. -0.45 +0.48 (syst.) × 106 cm-2s-1, 5.3σ greater than zero, providing strong evidence for solar νe flavor transformation. The total flux measured with the NC reaction is φNC = 5.09-0.43 +0.44(stat. -0.43 +0.46 (syst.) × 106 cm-2s-1, consistent with solar models. The night minus day rate is 14.0% ± 6.3%-1.4 +1.5% of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the νe asymmetry is found to be 7.0% ± 4.9%-1.2 +1.3%. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution

    First neutrino observations from the sudbury neutrino observatory

    No full text
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed

    Measurement of CC interactions produced by8B solar neutrinos at SNO

    No full text
    The Sudbury Neutrino Observatory (SNO) is a 1000 tonne heavy water Cherenkov detector placed 2 km underground in Ontario, Canada. Its main purpose is the detection of solar neutrinos, but it is also sensitive to atmospheric and supernova neutrinos. In this paper we report our first measurement of the solar electron-type neutrino flux using the charged current interaction on deuterium, above an electron kinetic energy threshold of 6.75 MeV. This measurement, when compared with an electron scattering measurement from Super Kamiokande, provides the first evidence for non-electron neutrino types from the Sun implying flavor change of solar electron neutrinos. We also present an initial angular distribution of through-going muons, which shows that we can detect neutrino-induced muons from well above the horizontal. This will give us good sensitivity to neutrino oscillations in the atmospheric sector
    corecore