2 research outputs found

    The transmission problem on a three-dimensional wedge

    Get PDF
    We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is carried out in two formulations leading to rather different spectral pictures. One formulation is in terms of square integrable boundary data, the other is in terms of finite energy solutions. We use the layer potential method, which requires the harmonic analysis of a non-commutative non-unimodular group associated with the wedge

    Perfect magnetic mirror and simple perfect absorber in the visible spectrum

    No full text
    Known experimental artificial magnetic conductors for terahertz and optical frequencies are formed by arrays of nanoparticles of various shapes. In this paper, we show that artificial magnetic conductors for the visible spectrum can be realized as simple, effectively quasistatic resonating structures, where the effective inductance is due to the magnetic flux inside a uniform metal substrate, and the effective capacitance is due to electric polarization of a thin uniform dielectric cover. To illustrate the main potential application of artificial magnetic conductors, we concentrate on the perfect-absorption regime, achieved by adjusting the loss factor of the artificial magnetic conductor to match its real input impedance to free space. We provide approximate analytical design formulas and introduce a simple equivalent circuit to explain the physical mechanism of emulation of magnetic response and perfect absorption of light. A prototype of a nearly perfect absorber for optical (from green to ultraviolet) frequencies is designed and experimentally tested. The results confirm the theoretical predictions and show polarization insensitivity and angular independence of response in a wide range of incidence angles.Peer reviewe
    corecore