267 research outputs found

    Improving yield and cane quality through implementation of harvesting best practice-2019 Herbert demonstration

    Get PDF
    In 2019, the Australian sugarcane industry conducted a month-long demonstration with 12 trials to determine the commercial viability of harvesting best practice. Initiated by a small group of innovative growers and contractors from the Herbert region, the concept of a commercial demonstration sought to determine both agronomic and economic impacts of adopting HBP, including the assessment of possible yield gains without having a detrimental impact on extraneous matter, and economic implication for growers and harvesting contractors arising from revenue and harvesting cost changes. Two Herbert harvesting contractors participated in the demonstration comparing their standard harvesting practices to Sugar Research Australia Harvesting Best Practice (HBP or recommended practice). The results identified an average 4.8 t/ha increase in yield with no additional increase in extraneous matter for the recommended setting. A comprehensive economic analysis was conducted on each of the trials. Detailed harvesting costs and operational information, including machinery, labour, and fuel data, were collected from the respective harvesting operations. Harvesting costs and levies were 37/ha(37/ha (0.07/t) higher for the recommended setting due to higher yields, reduced harvester ground speeds and lower extractor fan speeds. Despite the higher harvesting costs, recommended settings obtained significantly higher total revenue (151/ha,+4.7151/ha, +4.7%). This resulted in an overall net benefit of 114/ha in the adoption of recommended settings (based on a 4.4% higher net revenue calculated as total grower revenue minus harvesting costs and levies). The Herbert demonstrations have proven instrumental in the acceptance of harvesting best practice for the region. The results again confirm that adapting and aligning commercial-scale harvesting practices to crop and paddock conditions have positive impacts on both yield and economic outcomes

    Site 1222

    No full text
    Site 1222 (13°48.98´N, 143°53.35´W; 4989 meters below sea level [mbsl]; Fig. F1) forms a south-central component of the 56-Ma transect drilled during Leg 199 and is situated ~2° south of the Clarion Fracture Zone in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1222 to be equivalent to Chron C25r or Chron C25n (~56-57 Ma) (Cande et al., 1989), which is slightly older than at Site 1219. At the outset of drilling at Site 1222, our estimate for total sediment thickness was ~115 m (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) Site 1222 should have been located ~1° north of the equator at 56 Ma and ~4°N at 40 Ma. A nearby gravity core (EW9709-17GC), taken during the site survey cruise, recovered >5 m of red clay with a late-middle Miocene age on the basis of radiolarian biostratigraphy (Lyle, 2000). Deep Sea Drilling Project (DSDP) Site 42 located ~4° east of Site 1222, was not drilled to basement but contains a thin sedimentary section (~100 m thick) of upper Oligocene nannofossil ooze through middle Eocene radiolarian nannofossil ooze. In turn, DSDP Site 162 lies ~1° north of DSDP Site 42 and is situated on young crust (49 Ma) that contains ~150 m of clayey radiolarian and nannofossil oozes of early Oligocene-middle Eocene age. Site 1222 will be used to study the position of the Intertropical Convergence Zone in the late Eocene and Oligocene, to sample late Paleocene and early Eocene sediments in the central tropical Pacific Ocean, and to help determine whether or not there has been significant southward movement of the hotspots with respect to the spin axis prior to 40 Ma

    Site 1216

    No full text
    Site 1216 (21°27.16´N, 139°28.79´W; 5152 meters below sea level [mbsl]; Fig. F1) is situated in abyssal hill topography south of the Molokai Fracture Zone and two small associated unnamed parasitic fracture zones (Fig. F2). Based on magnetic lineations, Site 1216 appears to be situated on normal ocean crust formed during the C25r magnetic anomaly (~57 Ma; Atwater and Severinghaus, 1989). Site 1216 was chosen for drilling because it is near the thickest section of lower Eocene sediments along the 56-Ma transect, which was based upon the seismic stratigraphy of seismic reflection data acquired on site survey cruise EW9709 during transits between the proposed drill sites (Lyle et al., this volume; Moore et al., 2002). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199, being largely based on two Deep Sea Drilling Project (DSDP) drill sites (40 and 41) and piston core data (EW9709-3PC) from ~1.5° in latitude to the south. Based on data from these drill sites, we expected the sedimentary sequence at Site 1216 to comprise red clays (a mixture of wind-blown dust and authigenic precipitates) overlying a biogenic sediment section composed of an upper middle Eocene radiolarian ooze and lower carbonate ooze deposited when the site was near the ridge crest in the late Paleocene and early Eocene. The broad paleoceanographic objectives of drilling the sedimentary sequence anticipated at Site 1216 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian-dust composition and flux through time (red clays) and (2) to help define the latitudinal extent, composition, and mass accumulation of plankton communities in the north equatorial Pacific region thereby constraining ocean circulation patterns and the extent of the equatorial high-productivity belt in the Eocene ocean. Results from Site 1216 will also provide important information to test whether there was significant motion of the Hawaiian hotspot with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location of Site 1216 based upon a hotspot reference frame (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) is about 9°N, 108°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator

    Site 1220

    No full text
    Site 1220 (10°10.600´N, 142°45.503´W; 5218 meters below sea level (mbsl); Fig. F1) forms a southerly component of the 56-Ma transect drilled during Leg 199. It is situated about midway between the Clipperton and Clarion Fracture Zones in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1220 to be equivalent to Chron C25n (~56 Ma; Cande et al., 1989), slightly older than at Site 1219. At the outset of drilling at Site 1220, our estimate for total sediment depth was ~225 meters below seafloor (mbsf) (Fig. F2). Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles), Site 1220 should have been located ~3° south of the equator at 56 Ma and in an equatorial position at 40 Ma. Thus, Site 1220 should have been situated underneath the South Equatorial Current in the early Eocene. A nearby piston core (EW9709-13PC) taken during the site survey cruise recovered >16 m of red clay, with the base of the core dated as middle-early Miocene on the basis of radiolarian biostratigraphy (Lyle, 2000). Site 1220 will be used to study equatorial ocean circulation from the late Paleocene through the late Eocene during the early Cenozoic thermal maximum. Sediment records from this site will help to define the calcite compensation depth (CCD) and lysocline during the Paleocene-Eocene and Eocene-Oligocene transitions. In this and other respects, Site 1220 will act as an interesting analog to Site 1218. Both sites are thought to have been located on the equator at ~40 Ma, but the older crustal age anticipated at Site 1220 dictates a greater paleowater depth than for contemporaneous sediments accumulating at Site 1218

    Site 1217

    No full text
    Site 1217 (16°52.02´N, 138°06.00´W; 5342 meters below sea level [mbsl]; Fig. F1) is one of seven sites drilled to target upper Paleocene crust along a latitudinal transect during Leg 199 and will be used to investigate paleoceanographic processes in the northern tropical early Eocene Pacific Ocean. Site 1217 is situated ~1° north of the Clarion Fracture Zone on abyssal hill topography typical of the central Pacific. Based on magnetic lineations, basement age at Site 1217 should be in magnetic Anomaly C25r or ~57 Ma (Cande et al., 1989; timescale of Cande and Kent, 1995). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199 drilling because the nearest drill site (Deep Sea Drilling Project [DSDP] Site 162) is situated ~300 km south and west on 48-Ma crust. Based on data from this early rotary-cored hole, magnetic anomaly maps, a shallow-penetration piston core near Site 1217 (EW9709-4PC), and seismic profiling (Fig. F2), we expected the sedimentary sequence at Site 1217 to comprise a relatively thick (25 to 35 m thick) section of red clays overlying a radiolarian ooze and a basal carbonate section with possible chert near basement (estimated total depth ~125-150 meters below seafloor [mbsf]) deposited when the site was near the ridge crest in the late Paleocene and early Eocene. Site 1217 was chosen because it is anticipated to have been located just outside of the equatorial region at 56 Ma, ~5°N, 106°W based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles). On the same basis at 40 Ma, the site was located at ~8°N, 111°W. Thus, Site 1217 should help define the paleoceanography of the northern tropical Pacific, in particular locating the ancient North Equatorial Countercurrent (NECC) region. General circulation-model experiments for the early Eocene (see Huber, this volume) suggest that the NECC was a well-developed current during this time period. Other paleoceanographic and paleoclimatic objectives of drilling the sedimentary sequence anticipated at Site 1217 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian dust composition and flux through time (red clays); (2) to help constrain the middle-late Eocene calcite compensation depth (CCD); and (3) to sample the Paleocene/Eocene (P/E) boundary, one of the most climatologically critical intervals of Cenozoic time. Recovery of deep-sea sediments from this time interval during Leg 199 is a high priority because the P/E boundary has never before been sampled in the central tropical Pacific Ocean. Results from Site 1217 will also provide important information to test whether there was significant motion of the Hawaiian hotspot, with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location based upon a hotspot reference frame is ~5°N, 106°W, and at 40 Ma is ~8°N, 106°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator

    Geochemical analysis of bulk marine sediment by Inductively Coupled Plasma–Atomic Emission Spectroscopy on board the JOIDES Resolution

    No full text
    Geochemical analyses on board the JOIDES Resolution have been enhanced with the addition of a Jobin-Yvon Ultrace inductively coupled plasma-atomic emission spectrometer (ICP-AES) as an upgrade from the previous X-ray fluorescence facility. During Leg 199, we sought to both challenge and utilize the capabilities of the ICP-AES in order to provide an extensive bulk-sediment geochemical database during the cruise. These near real-time analyses were then used to help characterize the recovered sedimentary sequences, calculate mass accumulation rates of the different sedimentary components, and assist with cruise and postcruise sampling requests. The general procedures, sample preparation techniques, and basic protocol for ICP-AES analyses on board ship are outlined by Murray et al. (2000) in Ocean Drilling Program Tech Note, 29. We expand on those concepts and offer suggestions for ICP-AES methodology, calibration by standard reference materials, data reduction procedures, and challenges that are specific to the analysis of bulk-sediment samples. During Leg 199, we employed an extensive bulk-sediment analytical program of ~600 samples of varying lithologies, thereby providing several opportunities for refinement of techniques. We also discuss some difficulties and challenges that were faced and suggest how to alleviate such occurrences for sedimentary chemical analyses during future legs

    Parenting the Premature Infant: Potential Iatrogenesis from the Neonatal Intensive Care Experience

    Full text link
    (1) Developmental outcomes of premature infants are associated with the quality of the home environment and the level of parenting skills the family possesses. Successful development of the parenting role may be negatively influenced by the Neonatal Intensive Care Unit (NICU) environment and nursing practices. Identification of interventions that promote the development of parenting skills in the NICU can potentially improve developmental outcomes for premature infants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73814/1/j.1524-475X.1996.00046.x.pd

    An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    Get PDF
    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal

    Using Core (mcd) to log (mbsf) depth miss-matches as a basis for interpreting core elastic rebound and re-calculating core physical properties. Results from ODP Leg 199 (abstract of paper presented at AGU Fall Meeting, San Francisco, 6-10 Dec 2002)

    No full text
    Leg 199 drilled a series of sites in the equatorial Pacific in order to investigate the paleoceanography of the Paleogene Pacific Ocean. The two deepest cored sites, (1218 and 1219) have provided continuous/near continuous spliced sedimentary sections and in situ wireline log data. Comparison of core to log data sets shows the familiar non-linear, increasing with depth, miss-match between the core (metres composite depth - mcd) and log (mbsf) depths and concomitant offset between core and log physical property data sets e.g. porosity, density, velocity. The depth miss-matches represent core expansion due to elastic rebound experienced by the sediments upon unloading i.e. removal of overburden stress, which is a function of the sediment void ratio and log of the effective in situ stress. The increasing depth offset observed between the 1218 core and log data is used to calculate an expansion index (Cr_{r}) for continuous discrete measurement intervals, down the core. The Cr_{r} values are used to re-compress the core (mcd) depth scale and as expected provide a good match with the log (mbsf) depths. The Cr_{r} values are also used to correct the core index property data, to in situ values. The quality of the corrected core index property data is good when compared with the in situ measured log data. Cr_{r} values are dependent upon the sediment composition (especially the quantity of clay) and core light absorption spectroscopy (LAS) data collected on Leg 199, provides a continuous down-core record of sediment composition, in terms of the percent clay, carbonate and opal. A relationship between the Cr_{r} values and the sediment LAS composition is established and is then applied to the Site 1219 core LAS data, allowing appropriate Cr_{r} values to be assigned to continuous, discrete core intervals. These composition based Cr_{r} values are then used to re-calculate the core (mcd) depths and correct the index property data to in situ values. The quality of the depth and index property corrections are checked by comparison with the in situ measured log data, and provide encouraging results
    • …
    corecore