6 research outputs found

    Auxiliary Fields for Super Yang-Mills from Division Algebras

    Get PDF
    Division algebras are used to explain the existence and symmetries of various sets of auxiliary fields for super Yang-Mills in dimensions d=3,4,6,10d=3,4,6,10. (Contribution to G\"ursey Memorial Conference I: Strings and Symmetries)Comment: 7 pages, plain TeX, CERN-TH.7470/9

    Octonion Quantum Chromodynamics

    Full text link
    Starting with the usual definitions of octonions, an attempt has been made to establish the relations between octonion basis elements and Gell-Mann \lambda matrices of SU(3)symmetry on comparing the multiplication tables for Gell-Mann \lambda matrices of SU(3)symmetry and octonion basis elements. Consequently, the quantum chromo dynamics (QCD) has been reformulated and it is shown that the theory of strong interactions could be explained better in terms of non-associative octonion algebra. Further, the octonion automorphism group SU(3) has been suitably handled with split basis of octonion algebra showing that the SU(3)_{C}gauge theory of colored quarks carries two real gauge fields which are responsible for the existence of two gauge potentials respectively associated with electric charge and magnetic monopole and supports well the idea that the colored quarks are dyons

    Generalizations of normal ordering and applications to quantization in classical backgrounds

    Full text link
    A nonlocal method of extracting the positive (or the negative) frequency part of a field, based on knowledge of a 2-point function, leads to certain natural generalizations of the normal ordering of quantum fields in classical gravitational and electromagnetic backgrounds and illuminates the origin of the recently discovered nonlocalities related to a local description of particles. A local description of particle creation by gravitational backgrounds is given, with emphasis on the case of black-hole evaporation. The formalism reveals a previously hidden relation between various definitions of the particle current and those of the energy-momentum tensor. The implications to particle creation by classical backgrounds, as well as to the relation between vacuum energy, dark matter, and cosmological constant, are discussed.Comment: 17 pages, revised, title shortened, to appear in Gen. Rel. Gra

    Quantum mechanics: Myths and facts

    Get PDF
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in Found. Phy

    Quantum field theory in static external potentials and Hadamard states

    Get PDF
    We prove that the ground state for the Dirac equation on Minkowski space in static, smooth external potentials satisfies the Hadamard condition. We show that it follows from a condition on the support of the Fourier transform of the corresponding positive frequency solution. Using a Krein space formalism, we establish an analogous result in the Klein-Gordon case for a wide class of smooth potentials. Finally, we investigate overcritical potentials, i.e. which admit no ground states. It turns out, that numerous Hadamard states can be constructed by mimicking the construction of ground states, but this leads to a naturally distinguished one only under more restrictive assumptions on the potentials.Comment: 30 pages; v2 revised, accepted for publication in Annales Henri Poincar
    corecore