21 research outputs found

    The epigenetics of aging and neurodegeneration

    No full text
    Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed

    Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease?

    No full text
    Age-associated dementia, in particular Alzheimer's disease (AD), will be a major concern of the 21st century. Research into normal brain aging and AD will therefore become increasingly important. As for other areas of medicine, the availability of good animal models will be a limiting factor for progress. Given the complexity of the human brain, the identification of appropriate primate models will be essential to further knowledge of the disease. In this review, we describe the features of brain aging and age-associated neurodegeneration in a small lemurian primate, the Microcebus murinus, also referred to as the mouse lemur. The mouse lemur has a relatively short life expectancy, and animals over 5 years of age are considered to be elderly. Among elderly mouse lemurs, the majority show normal brain aging, whereas approximately 20% develop neurodegeneration. This Microcebus age-associated neurodegeneration is characterized by a massive brain atrophy, abundant amyloid plaques, a cytoskeletal Tau pathology and a loss of cholinergic neurons. While elderly mouse lemurs with normal brain aging maintain memory function and social interaction, animals with age-associated neurodegeneration lose their cognitive and social capacities and demonstrate certain similarities with age-associated human AD. We conclude that M. murinus is an interesting primate model for the study of normal brain aging and the biochemical dysfunctions occurring in age-associated neurodegeneration. Mouse lemurs might also become an increasingly important model for the development of novel treatments in this domain
    corecore