19 research outputs found

    Comparison of gene expression profile between human chondrons and chondrocytes: a cDNA microarray study

    Get PDF
    OBJECTIVE: The chondron is a basic unit of articular cartilage that includes the chondrocyte and its pericellular matrix (PCM). This current study was designed to investigate the effects of the chondron PCM on the gene expression profile of chondrocytes. DESIGN: Chondrons and chondrocytes were enzymatically isolated from human articular cartilage, and maintained in pellet culture. Pellets of chondrons or chondrocytes were collected at days 1, 3 and 5 for cDNA microarray analysis. RESULTS: In comparison with chondrocytes alone, chondrons had 258 genes, in a broad range of functional categories, either up- or downregulated at the three time points tested. At day 1, 26 genes were significantly upregulated in chondrons and four downregulated in comparison to chondrocytes. At day 3, the number of upregulated chondron genes was 97 and the number downregulated was 43. By day 5, there were more downregulated genes (56) than upregulated genes (32) in chondrons. Upregulation of a group of heat shock proteins (HSPA1A, HSPA2 and HSPA8) in chondrons was validated by real time reverse transcription polymerase chain reaction (RT-PCR). Genes related to chondrocyte hypertrophy and dedifferentiation such as SSP1 and DCN were downregulated in chondrons as compared to the expression in chondrocytes. CONCLUSION: The presence of the PCM in chondrons has a profound influence on chondrocyte gene expression. Upregulation of the heat shock protein 70 may contribute to the robustness and active matrix production of chondrons. The intact PCM may further stabilize the phenotype of chondrocytes within chondrons

    Comparison of gene expression profile between human chondrons and chondrocytes: a cDNA microarray study

    Get PDF
    SummaryObjectiveThe chondron is a basic unit of articular cartilage that includes the chondrocyte and its pericellular matrix (PCM). This current study was designed to investigate the effects of the chondron PCM on the gene expression profile of chondrocytes.DesignChondrons and chondrocytes were enzymatically isolated from human articular cartilage, and maintained in pellet culture. Pellets of chondrons or chondrocytes were collected at days 1, 3 and 5 for cDNA microarray analysis.ResultsIn comparison with chondrocytes alone, chondrons had 258 genes, in a broad range of functional categories, either up- or downregulated at the three time points tested. At day 1, 26 genes were significantly upregulated in chondrons and four downregulated in comparison to chondrocytes. At day 3, the number of upregulated chondron genes was 97 and the number downregulated was 43. By day 5, there were more downregulated genes (56) than upregulated genes (32) in chondrons. Upregulation of a group of heat shock proteins (HSPA1A, HSPA2 and HSPA8) in chondrons was validated by real time reverse transcription polymerase chain reaction (RT-PCR). Genes related to chondrocyte hypertrophy and dedifferentiation such as SSP1 and DCN were downregulated in chondrons as compared to the expression in chondrocytes.ConclusionThe presence of the PCM in chondrons has a profound influence on chondrocyte gene expression. Upregulation of the heat shock protein 70 may contribute to the robustness and active matrix production of chondrons. The intact PCM may further stabilize the phenotype of chondrocytes within chondrons

    A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos

    No full text
    We have generated the first mouse model of fibro-blast growth factor receptor 3 (Fgfr3) with the K644E mutation, which accurately reflects the embryonic onset of a neonatal lethal dwarfism, thanatophoric dysplasia type II (TDII). Long-bone abnormalities were identified as early as embryonic day 14, during initiation of endochondral ossification. Increased expression of PATCHED: (PTC:) was observed, independent of unaltered expression of parathyroid hormone-related peptide (PTHrP) receptor and Indian Hedgehog (IHH:), suggesting a new regulatory role for Fgfr3 in embryos. We demonstrate that the mutation enhances chondrocyte proliferation during the early embryonic skeletal development, in contrast to previous reports that showed decreased proliferation in postnatal-onset dwarf mice with activating Fgfr3 mutations. This suggests that signaling through Fgfr3 both promotes and inhibits chondrocyte proliferation, depending on the time during development. In contrast, suppressed chondrocyte differentiation was observed throughout the embryonic stages, defining decreased differentiation as the primary cause of retarded longitudinal bone growth in TDII. This model was successfully crossed with a cartilage-specific CRE: transgenic strain, excluding the lung as the primary cause of lethality

    An exclusion map of Marfan syndrome.

    No full text
    The combined genetic data between the Marfan syndrome and 75 informative loci on 18 autosomes were used to construct an exclusion map for this disorder. Data are also presented for a further two unmapped markers. The most likely location of the Marfan syndrome gene is highlighted and all the unexcluded areas of the genome are displayed in a graphical form. This exclusion map shows that almost 75% of the genome has been excluded as a likely location for the Marfan syndrome gene in the majority of the families studied. Apart from chromosomes 8, 13, 21, and 22, for which no data were available, other regions not excluded yet include 5p, 6p, 9p, 10p, 12p, 15, 17p, 18, and 20p. Future linkage analysis using markers located in the highlighted regions should facilitate the identification of the site of the Marfan syndrome gene
    corecore