9 research outputs found

    Globally optimal 3D image reconstruction and segmentation via energy minimisation techniques

    Get PDF
    This paper provides an overview of a number of techniques developed within our group to perform 3D reconstruction and image segmentation based of the application of energy minimisation concepts. We begin with classical snake techniques and show how similar energy minimisation concepts can be extended to derive globally optimal segmentation methods. Then we discuss more recent work based on geodesic active contours that can lead to globally optimal segmentations and reconstructions in 2D. Finally we extend the work to 3D by introducing continuous flow globally minimal surfaces. Several applications are discussed to show the wide applicability and suitability of these techniques to several difficult image analysis problems

    Medial models incorporating object variability for 3D shape analysis

    No full text
    Knowledge about the biological variability of anatomical objects is essential for statistical shape analysis and discrimination between healthy and pathological structures. This paper describes a novel approach that incorporates variability of an object population into the generation of a characteristic 3D shape model. The proposed shape representation is based on a fine-scale spherical harmonics (SPHARM) boundary description and a coarse-scale sampled medial description. The medial description is composed of a net of medial samples (m-rep) with fixed graph properties. The medial model is computed automatically from a predefined shape space using pruned 3D Voronoi skeletons to determine the stable medial branching topology. An intrinsic coordinate system and an implicit correspondence between shapes is defined on the medial manifold

    Pediatric Obstructive Sleep Apnea: Complications, Management, and Long-term Outcomes

    Get PDF
    Obstructive sleep apnea (OSA) in children has emerged not only as a relatively prevalent condition but also as a disease that imposes a large array of morbidities, some of which may have long-term implications, well into adulthood. The major consequences of pediatric OSA involve neurobehavioral, cardiovascular, and endocrine and metabolic systems. The underlying pathophysiological mechanisms of OSA-induced end-organ injury are now being unraveled, and clearly involve oxidative and inflammatory pathways. However, the roles of individual susceptibility (as dictated by single-nucleotide polymorphisms), and of environmental and lifestyle conditions (such as diet, physical, and intellectual activity), may account for a substantial component of the variance in phenotype. Moreover, the clinical prototypic pediatric patient of the early 1990s has been insidiously replaced by a different phenotypic presentation that strikingly resembles that of adults afflicted by the disease. As such, analogous to diabetes, the terms type I and type II pediatric OSA have been proposed. The different manifestations of these two entities and their clinical course and approaches to management are reviewed
    corecore