5,747 research outputs found

    Magnetization reversal in Kagome artificial spin ice studied by first-order reversal curves

    Get PDF
    Magnetization reversal of interconnected Kagome artificial spin ice was studied by the first-order reversal curve (FORC) technique based on the magneto-optical Kerr effect and magnetoresistance measurements. The magnetization reversal exhibits a distinct six-fold symmetry with the external field orientation. When the field is parallel to one of the nano-bar branches, the domain nucleation/propagation and annihilation processes sensitively depend on the field cycling history and the maximum field applied. When the field is nearly perpendicular to one of the branches, the FORC measurement reveals the magnetic interaction between the Dirac strings and orthogonal branches during the magnetization reversal process. Our results demonstrate that the FORC approach provides a comprehensive framework for understanding the magnetic interaction in the magnetization reversal processes of spin-frustrated systems

    Nernst and Seebeck effect in a graphene nanoribbon

    Get PDF
    The thermoelectric power, including the Nernst and Seebeck effects, in graphene nanoribbon is studied. By using the non-equilibrium Green function combining with the tight-binding Hamiltonian, the Nernst and Seebeck coefficients are obtained. Due to the electron-hole symmetry, the Nernst coefficient is an even function of the Fermi energy while the Seebeck coefficient is an odd function regardless of the magnetic field. In the presence of a strong magnetic field, the Nernst and Seebeck coefficients are almost independent of the chirality and width of the nanoribbon, and they show peaks when the Fermi energy crosses the Landau levels. The height of nn-th (excluding n=0n=0) peak is [ln2/n][\ln2/|n|] for the Nernst effect and is ln2/n\ln2/n for the Seebeck effect. For the zeroth peak, it is abnormal with height [2ln2][2\ln2] for the Nernst effect and the peak disappears for the Seebeck effect. When the magnetic field is turned off, however, the Nernst effect is absent and only Seebeck effect exists. In this case, the Seebeck coefficient strongly depends on the chirality of the nanoribbon. The peaks are equidistant for the nanoribbons with zigzag edge but are irregularly distributed for the armchair edge. In particular, for the insulating armchair ribbon, the Seebeck coefficient can be very large near the Dirac point. When the magnetic field varies from zero to large values, the differences among the Seebeck coefficients for different chiral ribbons gradually vanish and the nonzero value of Nernst coefficient appears first near the Dirac point then gradually extents to the whole energy region.Comment: 8 pages, 7 figure

    Josephson current transport through a Quantum Dot in an Aharonov-Bohm Ring

    Full text link
    The Josephson current through an Aharonov-Bohm (AB) interferometer, in which a quantum dot (QD) is situated on one arm and a magnetic flux Φ\Phi threads through the ring, has been investigated. With the existence of the magnetic flux, the relation of the Josephson current and the superconductor phase is complex, and the system can be adjusted to π\pi junction by either modulating the magnetic flux or the QD's energy level εd\varepsilon_d. Due to the electron-hole symmetry, the Josephson current II has the property I(εd,Φ)=I(εd,Φ+π)I(\varepsilon_d,\Phi)=I(-\varepsilon_d,\Phi+\pi). The Josephson current exhibits a jump when a pair of Andreev bound states aligns with the Fermi energy. The condition for the current jump is given. In particularly, we find that the position of the current jump and the position of the maximum value of the critical current IcI_c are identical. Due to the interference between the two paths, the critical current IcI_c versus the QD's level εd\varepsilon_d shows a typical Fano shape, which is similar to the Fano effect in the corresponding normal device. But they also show some differences. For example, the critical current never reaches zero for any parameters, while the current in the normal device can reach zero at the destruction point.Comment: 7 pages, 5 figure

    ISAR image matching and three-dimensional scattering imaging based on extracted dominant scatterers

    Get PDF
    This paper studies inverse synthetic aperture radar (ISAR) image matching and three-dimensional (3D) scattering imaging based on extracted dominant scatterers. In the condition of a long baseline between two radars, it is easy for obvious rotation, scale, distortion, and shift to occur between two-dimensional (2D) radar images. These problems lead to the difficulty of radar-image matching, which cannot be resolved by motion compensation and cross-correlation. What is more, due to the anisotropy, existing image-matching algorithms, such as scale invariant feature transform (SIFT), do not adapt to ISAR images very well. In addition, the angle between the target rotation axis and the radar line of sight (LOS) cannot be neglected. If so, the calibration result will be smaller than the real projection size. Furthermore, this angle cannot be estimated by monostatic radar. Therefore, instead of matching image by image, this paper proposes a novel ISAR imaging matching and 3D imaging based on extracted scatterers to deal with these issues. First, taking advantage of ISAR image sparsity, radar images are converted into scattering point sets. Then, a coarse scatterer matching based on the random sampling consistency algorithm (RANSAC) is performed. The scatterer height and accurate affine transformation parameters are estimated iteratively. Based on matched scatterers, information such as the angle and 3D image can be obtained. Finally, experiments based on the electromagnetic simulation software CADFEKO have been conducted to demonstrate the effectiveness of the proposed algorithm
    corecore