139,737 research outputs found
Pyrite oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide
Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system
was cyclically exposed to 50 μM H2O2, the colonization of Acidithiobacillus ferrooxidans onto the mineral surface was markedly enhanced, as compared to the control(no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nanoto micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces
where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the
mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes
Crumpling wires in two dimensions
An energy-minimal simulation is proposed to study the patterns and mechanical
properties of elastically crumpled wires in two dimensions. We varied the
bending rigidity and stretching modulus to measure the energy allocation,
size-mass exponent, and the stiffness exponent. The mass exponent is shown to
be universal at value . We also found that the stiffness exponent
 is universal, but varies with the plasticity parameters  and
. These numerical findings agree excellently with the experimental
results
MEMS flow sensors for nano-fluidic applications
This paper presents micromachined thermal sensors for measuring liquid flow rates in the nanoliter-per-minute range. The sensors use a boron-doped polysilicon thinfilm heater that is embedded in the silicon nitride wall of a microchannel. The boron doping is chosen to increase the heater’s temperature coefficient of resistance within tolerable noise limits, and the microchannel is suspended from the substrate to improve thermal isolation. The sensors have demonstrated a flow rate resolution below 10 nL/min, as well as the capability for detecting micro bubbles in the liquid. Heat transfer simulation has also been performed to explain the sensor operation and yielded good agreement with experimental data
Detection of X-ray periodicity from a new eclipsing polar candidate XGPS-I J183251-100106
We report the results from a detailed analysis of an archival XMM-Newton
observation of the X-ray source XGPS-I J183251-100106, which has been suggested
as a promising magnetic cataclysmic variable candidate based on its optical
properties. A single periodic signal of 1.5 hrs is detected from all EPIC
cameras on board XMM-Newton. The phase-averaged X-ray spectrum can be
well-modeled with a thermal bremsstrahlung of a temperature kT~50 keV. Both
X-ray spectral and temporal behavior of this system suggest it as a eclipsing
cataclysmic variable of AM Herculis (or polar) type.Comment: 15 pages, 6 figures, accepted for publication in Ap
Nonuniversal Effects in the Homogeneous Bose Gas
Effective field theory predicts that the leading nonuniversal effects in the
homogeneous Bose gas arise from the effective range for S-wave scattering and
from an effective three-body contact interaction. We calculate the leading
nonuniversal contributions to the energy density and condensate fraction and
compare the predictions with results from diffusion Monte Carlo calculations by
Giorgini, Boronat, and Casulleras. We give a crude determination of the
strength of the three-body contact interaction for various model potentials.
Accurate determinations could be obtained from diffusion Monte Carlo
calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
: An Excellent Candidate of Tetraquarks
We analyze various possible interpretations of the narrow state
 which lies 100 MeV above threshold. This interesting state
decays mainly into  instead of . If this relative branching
ratio is further confirmed by other experimental groups, we point out that the
identification of  either as a  state or more generally
as a  state in the  representation is probably
problematic. Instead, such an anomalous decay pattern strongly indicates
 is a four quark state in the   representation
with the quark content . We discuss its
partners in the same multiplet, and the similar four-quark states composed of a
bottom quark . Experimental searches of other members
especially those exotic ones are strongly called for
- …
