31,313 research outputs found

    A modified particle method for semilinear hyperbolic systems with oscillatory solutions

    Get PDF
    We introduce a modified particle method for semi-linear hyperbolic systems with highly oscillatory solutions. The main feature of this modified particle method is that we do not require different families of characteristics to meet at one point. In the modified particle method, we update the ith component of the solution along its own characteristics, and interpolate the other components of the solution from their own characteristic points to the ith characteristic point. We prove the convergence of the modified particle method essentially independent of the small scale for the variable coefficient Carleman model. The same result also applies to the non-resonant Broadwell model. Numerical evidence suggests that the modified particle method also converges essentially independent of the small scale for the original Broadwell model if a cubic spline interpolation is used

    Energy bands and Landau levels of ultracold fermions in the bilayer honeycomb optical lattice

    Full text link
    We investigate the spectrum and eigenstates of ultracold fermionic atoms in the bilayer honeycomb optical lattice. In the low energy approximation, the dispersion relation has parabolic form and the quasiparticles are chiral. In the presence of the effective magnetic field, which is created for the system with optical means, the energy spectrum shows an unconventional Landau level structure. Furthermore, the experimental detection of the spectrum is proposed with the Bragg scattering techniques.Comment: To appear in Journal of Modern Optic

    Anyonic interferometry without anyons: How a flux qubit can read out a topological qubit

    Get PDF
    Proposals to measure non-Abelian anyons in a superconductor by quantum interference of vortices suffer from the predominantly classical dynamics of the normal core of an Abrikosov vortex. We show how to avoid this obstruction using coreless Josephson vortices, for which the quantum dynamics has been demonstrated experimentally. The interferometer is a flux qubit in a Josephson junction circuit, which can nondestructively read out a topological qubit stored in a pair of anyons --- even though the Josephson vortices themselves are not anyons. The flux qubit does not couple to intra-vortex excitations, thereby removing the dominant restriction on the operating temperature of anyonic interferometry in superconductors.Comment: 7 pages, 3 figures; Added an Appendix on parity-protected single-qubit rotations; problem with Figure 3 correcte

    Entanglement detection beyond the CCNR criterion for infinite-dimensions

    Get PDF
    In this paper, in terms of the relation between the state and the reduced states of it, we obtain two inequalities which are valid for all separable states in infinite-dimensional bipartite quantum systems. One of them provides an entanglement criterion which is strictly stronger than the computable cross-norm or realignment (CCNR) criterion.Comment: 11 page

    The Method of Combinatorial Telescoping

    Get PDF
    We present a method for proving q-series identities by combinatorial telescoping, in the sense that one can transform a bijection or a classification of combinatorial objects into a telescoping relation. We shall illustrate this method by giving a combinatorial proof of Watson's identity which implies the Rogers-Ramanujan identities.Comment: 11 pages, 5 figures; to appear in J. Combin. Theory Ser.
    corecore