71,881 research outputs found

    k_T factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

    Full text link
    We show that hard-scattering factorization is violated in the production of high-p_T hadrons in hadron-hadron collisions, in the case that the hadrons are back-to-back, so that k_T factorization is to be used. The explicit counterexample that we construct is for the single-spin asymmetry with one beam transversely polarized. The Sivers function needed here has particular sensitivity to the Wilson lines in the parton densities. We use a greatly simplified model theory to make the breakdown of factorization easy to check explicitly. But the counterexample implies that standard arguments for factorization fail not just for the single-spin asymmetry but for the unpolarized cross section for back-to-back hadron production in QCD in hadron-hadron collisions. This is unlike corresponding cases in e^+e^- annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the result endangers factorization for more general hadroproduction processes.Comment: 10 pages. V. 2: Title change, misprints and minor corrections, as in journal versio

    Low-energy electronic recoil in xenon detectors by solar neutrinos

    Full text link
    Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar pppp and 7Be^{7}\textrm{Be} neutrinos at the precision level of current standard solar model predictions. In this work we perform ab initio\textit{ab initio} many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about 25%25\%. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV - 30 keV with the standard per ton per year normalization for xenon detectors, and discuss its implication for low energy solar neutrino detection (as the signal) and WIMP search (as a source of background).Comment: 12 pages, 3 figure

    A dynamical approximation for stochastic partial differential equations

    Get PDF
    Random invariant manifolds often provide geometric structures for understanding stochastic dynamics. In this paper, a dynamical approximation estimate is derived for a class of stochastic partial differential equations, by showing that the random invariant manifold is almost surely asymptotically complete. The asymptotic dynamical behavior is thus described by a stochastic ordinary differential system on the random invariant manifold, under suitable conditions. As an application, stationary states (invariant measures) is considered for one example of stochastic partial differential equations.Comment: 28 pages, no figure

    Near-Infrared Survey of the GOODS-North Field: Search for Luminous Galaxy Candidates at z=>6.5

    Get PDF
    We present near-infrared (NIR; J & Ks) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2m Subaru and the WIRCam instrument on the 3.6m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data - i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J and Ks band images, covering the full GOODS-N field (~169 sq. arcmin) to an AB magnitude limit of ~25 mag (3sigma). We applied z'-band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman Break Galaxy (LBG) candidates at z\gtrsim6.5 with J\lesssim24.5. The first candidate is a likely LBG at z\sim6.5 based on a weak spectral feature tentatively identified as Lyalpha line in the deep Keck/DEIMOS spectrum, while the second candidate is a possible LBG at z\sim7 based on its photometric redshift. These z'-dropout objects, if confirmed, are among the brightest such candidates found so far. At z\gtrsim6.5, their star formation rate is estimated as 100-200 solar mass per year. If they continue to form stars at this rate, they assemble a stellar mass of ~5x10^10 solar mass after about 400 million years, becoming the progenitors of massive galaxies observed at z\sim5. We study the implication of the z'-band dropout candidates discovered here, in constraining the bright-end of the luminosity function and understanding the nature of high redshift galaxies.Comment: ApJ in press, minor text/reference update

    Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn_5

    Full text link
    Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflection characteristics with multiple structures which depend on junction impedance. Spectral analysis using the generalized Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our observations indicate a highly unconventional pairing mechanism, possibly involving multiple bands.Comment: 4 pages, 3 figure

    Development of hot drawing process for nitinol tube

    Get PDF
    In recent years, Nitinol, near-equiatomic nickel-titanium alloys, have found growing applications in medical technology and joining technology, due to their special characteristics such as shape memory, superplasticity and biocompatibility. The production of Nitinol tube cost-effectively remains a technical challenge. In this paper, we describe a hot drawing process for Nitinol tube production. A Nitinol tube blank and a metal core are assembled together. The assembly is hot drawn for several passes to a final diameter. The metal core is then plastically stretched to reduce its diameter and removed from the tube. Hot drawing process has been applied to Ni50.7Ti and Ni47Ti44Nb9 alloys. Nitinol tubes of 13.6 mm outer diameter and 1 mm wall thickness have been successfully produced from a tube blank of 20 mm outer diameter and 3.5 mm thickness

    Magneto-Optical Stern-Gerlach Effect in Atomic Ensemble

    Full text link
    We study the birefringence of the quantized polarized light in a magneto-optically manipulated atomic ensemble as a generalized Stern-Gerlach Effect of light. To explain this engineered birefringence microscopically, we derive an effective Shr\"odinger equation for the spatial motion of two orthogonally polarized components, which behave as a spin with an effective magnetic moment leading to a Stern-Gerlach split in an nonuniform magnetic field. We show that electromagnetic induced transparency (EIT) mechanism can enhance the magneto-optical Stern-Gerlach effect of light in the presence of a control field with a transverse spatial profile and a inhomogeneous magnetic field.Comment: 7 pages, 5 figure
    corecore