research

A dynamical approximation for stochastic partial differential equations

Abstract

Random invariant manifolds often provide geometric structures for understanding stochastic dynamics. In this paper, a dynamical approximation estimate is derived for a class of stochastic partial differential equations, by showing that the random invariant manifold is almost surely asymptotically complete. The asymptotic dynamical behavior is thus described by a stochastic ordinary differential system on the random invariant manifold, under suitable conditions. As an application, stationary states (invariant measures) is considered for one example of stochastic partial differential equations.Comment: 28 pages, no figure

    Similar works