14,392 research outputs found

    Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials

    Full text link
    We present four types of infinitely many exactly solvable Fokker-Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deformed versions of the Rayleigh process and the Jacobi process.Comment: 17 pages, 4 figure

    Magnetic susceptibility study of hydrated and non-hydrated NaxCoO2-yH2O single crystals

    Full text link
    We have measured the magnetic susceptibility of single crystal samples of non-hydrated NaxCoO2 (x ~ 0.75, 0.67, 0.5, and 0.3) and hydrated Na0.3CoO2-yH2O (y ~ 0, 0.6, 1.3). Our measurements reveal considerable anisotropy between the susceptibilities with H||c and H||ab. The derived anisotropic g-factor ratio (g_ab/g_c) decreases significantly as the composition is changed from the Curie-Weiss metal with x = 0.75 to the paramagnetic metal with x = 0.3. Fully hydrated Na0.3CoO2-1.3H2O samples have a larger susceptibility than non-hydrated Na0.3CoO2 samples, as well as a higher degree of anisotropy. In addition, the fully hydrated compound contains a small additional fraction of anisotropic localized spins.Comment: 6 pages, 5 figure

    Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system

    Full text link
    We have studied the magnetic characteristics of a series of super-oxygenated La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously phase separate into an oxygen rich superconducting phase with a TC near 40 K and an oxygen poor magnetic phase that also orders near 40 K. All samples studied are highly magnetically reversible even to low temperatures. Although the internal magnetic regions of these samples might be expected to act as pinning sites, our present study shows that they do not favor flux pinning. Flux pinning requires a matching condition between the defect and the superconducting coherence length. Thus, our results imply that the magnetic regions are too large to act as pinning centers. This also implies that the much greater flux pinning in typical La2-xSrxCuO4 materials is the result of nanoscale inhomogeneities that grow to become the large magnetic regions in the super-oxygenated materials. The superconducting regions of the phase separated materials are in that sense cleaner and more homogenous than in the typical cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR

    Singlet-Triplet Excitations in the Unconventional Spin-Peierls System TiOBr

    Full text link
    We have performed time-of-flight neutron scattering measurements on powder samples of the unconventional spin-Peierls compound TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the SNS. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate spin-Peierls phases, which we associate with n = 1 and n = 2 triplet excitations out of the singlet ground state. These measurements represent the first direct measure of the singlet-triplet energy gap in TiOBr, which is determined to be Eg = 21.2 +/- 1.0 meV.Comment: 5 pages, 4 figures, submitted for publicatio

    Deep shower interpretation of the cosmic ray events observed in excess of the Greisen-Zatsepin-Kuzmin energy

    Get PDF
    We consider the possibility that the ultra-high-energy cosmic ray flux has a small component of exotic particles which create showers much deeper in the atmosphere than ordinary hadronic primaries. It is shown that applying the conventional AGASA/HiRes/Auger data analysis procedures to such exotic events results in large systematic biases in the energy spectrum measurement. SubGZK exotic showers may be mis-reconstructed with much higher energies and mimick superGZK events. Alternatively, superGZK exotic showers may elude detection by conventional fluorescence analysis techniques.Comment: 22 pages, 5 figure
    corecore