19,644 research outputs found
Equilibrium spin pulsars unite neutron star populations
Many pulsars are formed with a binary companion from which they can accrete
matter. Torque exerted by accreting matter can cause the pulsar spin to
increase or decrease, and over long times, an equilibrium spin rate is
achieved. Application of accretion theory to these systems provides a probe of
the pulsar magnetic field. We compare the large number of recent torque
measurements of accreting pulsars with a high-mass companion to the standard
model for how accretion affects the pulsar spin period. We find that many long
spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10
G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the
strong-field solution is more compelling, in which case these pulsars are near
spin equilibrium. Our results provide evidence for a fundamental link between
pulsars with the slowest spin periods and strong magnetic fields around
high-mass companions and pulsars with the fastest spin periods and weak fields
around low-mass companions. The strong magnetic fields also connect our pulsars
to magnetars and strong-field isolated radio/X-ray pulsars. The strong field
and old age of our sources suggests their magnetic field penetrates into the
superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA
A detailed study of quasinormal frequencies of the Kerr black hole
We compute the quasinormal frequencies of the Kerr black hole using a
continued fraction method. The continued fraction method first proposed by
Leaver is still the only known method stable and accurate for the numerical
determination of the Kerr quasinormal frequencies. We numerically obtain not
only the slowly but also the rapidly damped quasinormal frequencies and analyze
the peculiar behavior of these frequencies at the Kerr limit. We also calculate
the algebraically special frequency first identified by Chandrasekhar and
confirm that it coincide with the quasinormal frequency only at the
Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure
Time-resolved extinction rates of stochastic populations
Extinction of a long-lived isolated stochastic population can be described as
an exponentially slow decay of quasi-stationary probability distribution of the
population size. We address extinction of a population in a two-population
system in the case when the population turnover -- renewal and removal -- is
much slower than all other processes. In this case there is a time scale
separation in the system which enables one to introduce a short-time
quasi-stationary extinction rate W_1 and a long-time quasi-stationary
extinction rate W_2, and develop a time-dependent theory of the transition
between the two rates. It is shown that W_1 and W_2 coincide with the
extinction rates when the population turnover is absent, and present but very
slow, respectively. The exponentially large disparity between the two rates
reflects fragility of the extinction rate in the population dynamics without
turnover.Comment: 8 pages, 4 figure
The time to extinction for an SIS-household-epidemic model
We analyse a stochastic SIS epidemic amongst a finite population partitioned
into households. Since the population is finite, the epidemic will eventually
go extinct, i.e., have no more infectives in the population. We study the
effects of population size and within household transmission upon the time to
extinction. This is done through two approximations. The first approximation is
suitable for all levels of within household transmission and is based upon an
Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an
endemic level relying on a large population. The second approximation is
suitable for high levels of within household transmission and approximates the
number of infectious households by a simple homogeneously mixing SIS model with
the households replaced by individuals. The analysis, supported by a simulation
study, shows that the mean time to extinction is minimized by moderate levels
of within household transmission
Extinction of metastable stochastic populations
We investigate extinction of a long-lived self-regulating stochastic
population, caused by intrinsic (demographic) noise. Extinction typically
occurs via one of two scenarios depending on whether the absorbing state n=0 is
a repelling (scenario A) or attracting (scenario B) point of the deterministic
rate equation. In scenario A the metastable stochastic population resides in
the vicinity of an attracting fixed point next to the repelling point n=0. In
scenario B there is an intermediate repelling point n=n_1 between the
attracting point n=0 and another attracting point n=n_2 in the vicinity of
which the metastable population resides. The crux of the theory is WKB method
which assumes that the typical population size in the metastable state is
large. Starting from the master equation, we calculate the quasi-stationary
probability distribution of the population sizes and the (exponentially long)
mean time to extinction for each of the two scenarios. When necessary, the WKB
approximation is complemented (i) by a recursive solution of the
quasi-stationary master equation at small n and (ii) by the van Kampen
system-size expansion, valid near the fixed points of the deterministic rate
equation. The theory yields both entropic barriers to extinction and
pre-exponential factors, and holds for a general set of multi-step processes
when detailed balance is broken. The results simplify considerably for
single-step processes and near the characteristic bifurcations of scenarios A
and B.Comment: 19 pages, 7 figure
High-Order Contamination in the Tail of Gravitational Collapse
It is well known that the late-time behaviour of gravitational collapse is
{\it dominated} by an inverse power-law decaying tail. We calculate {\it
higher-order corrections} to this power-law behaviour in a spherically
symmetric gravitational collapse. The dominant ``contamination'' is shown to
die off at late times as . This decay rate is much {\it
slower} than has been considered so far. It implies, for instance, that an
`exact' (numerical) determination of the power index to within
requires extremely long integration times of order . We show that the
leading order fingerprint of the black-hole electric {\it charge} is of order
.Comment: 12 pages, 2 figure
R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism
We derive the hydrodynamical equations of r-mode oscillations in neutron
stars in presence of a novel damping mechanism related to particle number
changing processes. The change in the number densities of the various species
leads to new dissipative terms in the equations which are responsible of the
{\it rocket effect}. We employ a two-fluid model, with one fluid consisting of
the charged components, while the second fluid consists of superfluid neutrons.
We consider two different kind of r-mode oscillations, one associated with
comoving displacements, and the second one associated with countermoving, out
of phase, displacements.Comment: 10 page
Nonexistence of Generalized Apparent Horizons in Minkowski Space
We establish a Positive Mass Theorem for initial data sets of the Einstein
equations having generalized trapped surface boundary. In particular we answer
a question posed by R. Wald concerning the existence of generalized apparent
horizons in Minkowski space
Residue currents associated with weakly holomorphic functions
We construct Coleff-Herrera products and Bochner-Martinelli type residue
currents associated with a tuple of weakly holomorphic functions, and show
that these currents satisfy basic properties from the (strongly) holomorphic
case, as the transformation law, the Poincar\'e-Lelong formula and the
equivalence of the Coleff-Herrera product and the Bochner-Martinelli type
residue current associated with when defines a complete intersection.Comment: 28 pages. Updated with some corrections from the revision process. In
particular, corrected and clarified some things in Section 5 and 6 regarding
products of weakly holomorphic functions and currents, and the definition of
the Bochner-Martinelli type current
- …