15,964 research outputs found

    Analytic Expression for Exact Ground State Energy Based on an Operator Method for a Class of Anharmonic Potentials

    Full text link
    A general procedure based on shift operators is formulated to deal with anharmonic potentials. It is possible to extract the ground state energy analytically using our method provided certain consistency relations are satisfied. Analytic expressions for the exact ground state energy have also been derived specifically for a large class of the one-dimensional oscillator with cubic-quartic anharmonic terms. Our analytical results can be used to check the accuracy of existing numerical methods, for instance the method of state-dependent diagonalization. Our results also agree with the asymptotic behavior in the divergent pertubative expansion of quartic harmonic oscillator.Comment: LaTeX with six figure (gif) files; Submitted to Phys. Rev.

    Rich variety of defects in ZnO via an attractive interaction between O-vacancies and Zn-interstitials

    Full text link
    As the concentration of intrinsic defects becomes sufficiently high in O-deficient ZnO, interactions between defects lead to a significant reduction in their formation energies. We show that the formation of both O-vacancies and Zn-interstitials becomes significantly enhanced by a strong attractive interaction between them, making these defects an important source of n-type conductivity in ZnO.Comment: 12 pages, 4 figure

    Nonmonotonic behavior of resistance in a superconductor-Luttinger liquid junction

    Full text link
    Transport through a superconductor-Luttinger liquid junction is considered. When the interaction in the Luttinger liquid is repulsive, the resistance of the junction with a sufficiently clean interface shows nonmonotonic temperature- or voltage-dependence due to the competition between the superconductivity and the repulsive interaction. The result is discussed in connection with recent experiments on single-wall carbon nanotubes in contact with superconducting leads.Comment: Revtex4, 2 eps figure files, slightly revised from an earlier version submitted to PRL on 2001.12.

    A unified approach for exactly solvable potentials in quantum mechanics using shift operators

    Get PDF
    We present a unified approach for solving and classifying exactly solvable potentials. Our unified approach encompasses many well-known exactly solvable potentials. Moreover, the new approach can be used to search systematically for a new class of solvable potentials.Comment: RevTex, 8 page

    Photon-number-solving Decoy State Quantum Key Distribution

    Full text link
    In this paper, a photon-number-resolving decoy state quantum key distribution scheme is presented based on recent experimental advancements. A new upper bound on the fraction of counts caused by multiphoton pulses is given. This upper bound is independent of intensity of the decoy source, so that both the signal pulses and the decoy pulses can be used to generate the raw key after verified the security of the communication. This upper bound is also the lower bound on the fraction of counts caused by multiphoton pulses as long as faint coherent sources and high lossy channels are used. We show that Eve's coherent multiphoton pulse (CMP) attack is more efficient than symmetric individual (SI) attack when quantum bit error rate is small, so that CMP attack should be considered to ensure the security of the final key. finally, optimal intensity of laser source is presented which provides 23.9 km increase in the transmission distance. 03.67.DdComment: This is a detailed and extended version of quant-ph/0504221. In this paper, a detailed discussion of photon-number-resolving QKD scheme is presented. Moreover, the detailed discussion of coherent multiphoton pulse attack (CMP) is presented. 2 figures and some discussions are added. A detailed cauculation of the "new" upper bound 'is presente

    Time-dependent Fr\"ohlich transformation approach for two-atom entanglement generated by successive passage through a cavity

    Full text link
    Time-dependent Fr\"ohlich transformations can be used to derive an effective Hamiltonian for a class of quantum systems with time-dependent perturbations. We use such a transformation for a system with time-dependent atom-photon coupling induced by the classical motion of two atoms in an inhomogeneous electromagnetic field. We calculate the entanglement between the two atoms resulting from their motion through a cavity as a function of their initial position difference and velocity.Comment: 7 pages, 3 figure

    Nonlocal Gate Of Quantum Network Via Cavity Quantum Electrodynamics

    Full text link
    We propose an experimentally feasible scheme to realize the nonlocal gate between two different quantum network nodes. With an entanglement-qubit (ebit) acts as a quantum channel, our scheme is resistive to actual environment noise and can get high fidelity in current cavity quantum electrodynamics (C-QED) system.Comment: 5 pages, 3 figures, 1 tabl
    corecore