21,854 research outputs found
Reentrant Melting of Soliton Lattice Phase in Bilayer Quantum Hall System
At large parallel magnetic field , the ground state of bilayer
quantum Hall system forms uniform soliton lattice phase. The soliton lattice
will melt due to the proliferation of unbound dislocations at certain finite
temperature leading to the Kosterlitz-Thouless (KT) melting. We calculate the
KT phase boundary by numerically solving the newly developed set of Bethe
ansatz equations, which fully take into account the thermal fluctuations of
soliton walls. We predict that within certain ranges of , the
soliton lattice will melt at . Interestingly enough, as temperature
decreases, it melts at certain temperature lower than exhibiting
the reentrant behaviour of the soliton liquid phase.Comment: 11 pages, 2 figure
Stiffness and energy losses in cylindrically symmetric superconductor levitating systems
Stiffness and hysteretic energy losses are calculated for a magnetically
levitating system composed of a type-II superconductor and a permanent magnet
when a small vibration is produced in the system. We consider a cylindrically
symmetric configuration with only vertical movements and calculate the current
profiles under the assumption of the critical state model. The calculations,
based on magnetic energy minimization, take into account the demagnetization
fields inside the superconductor and the actual shape of the applied field. The
dependence of stiffness and hysteretic energy losses upon the different
important parameters of the system such as the superconductor aspect ratio, the
relative size of the superconductor-permanent magnet, and the critical current
of the superconductor are all systematically studied. Finally, in view of the
results, we provide some trends on how a system such as the one studied here
could be designed in order to optimize both the stiffness and the hysteretic
losses.Comment: 8 pages; 8 figure
Nearest pattern interaction and global pattern formation
We studied the effect of nearest pattern interaction on a globally pattern
formation in a 2-dimensional space, where patterns are to grow initially from a
noise in the presence of periodic supply of energy. Although our approach is
general, we found that this study is relevant in particular to the pattern
formation on a periodically vibrated granular layer, as it gives a unified
perspective of the experimentally observed pattern dynamics such as oscillon
and stripe formations, skew-varicose and crossroll instabilities, and also a
kink formation and decoration
Recommended from our members
Intumescent Flame Retardant Polyamide 11 Nanocomposites
Current polyamide 11 and 12 are lacking in fire retardancy and high strength/high heat
resistance characteristics for a plethora of fabricated parts that are desired and required
for performance driven applications. The introduction of selected nanoparticles such as
surface modified montmorillonite (MMT) clay or carbon nanofibers (CNFs), combined
with a conventional intumescent flame retardant (FR) additive into the polyamide
11/polyamide 12 (PA11/PA12) by melt processing conditions has resulted in the
preparation of a family of intumescent polyamide nanocomposites. These intumescent
polyamide 11 and 12 nanocomposites exhibit enhanced polymer performance
characteristics, i.e., fire retardancy, high strength and high heat resistance and are
expected to expand the market opportunities for polyamide 11 and polyamide 12 polymer
manufacturers.
The objective of this research is to develop improved polyamide 11 and 12 polymers with
enhanced flame retardancy, thermal, and mechanical properties for selective laser
sintering (SLS) rapid manufacturing (RM). In the present study, a nanophase was
introduced into the polyamide 11 and combining it with a conventional intumescent FR
additive via twin screw extrusion. Arkema RILSAN® polyamide 11 molding polymer
pellets were examined with two types of nanoparticles: chemically modified
montmorillonite (MMT) organoclays, and carbon nanofibers (CNFs); and Clairant’s
Exolit® OP 1230 intumescent FR additive were used to create a family of FR
intumescent polyamide 11 nanocomposites.
Transmission electron microscopy (TEM) was used to determine the degree of
nanoparticles dispersion. Injection molded specimens were fabricated for physical,
thermal, and flammability measurements. Thermal stability of these intumescent
polyamide 11 nanocomposites was examined by TGA. Flammability properties were
obtained using the Cone Calorimeter at an external heat flux of 35 kW/m
2
and UL 94
Test Method. Heat deflection temperatures (HDT) were also measured. TEM
micrographs, physical, thermal, and flammability properties are presented. FR
intumescent polyamide 11 nanocomposites properties are compared with polyamide 11
baseline polymer. Based on flammability and mechanical material performance, selective
polymers including polyamide 11 nanocomposites and control polyamide 11 will be
cryogenically ground into fine powders for SLS RM processing. SLS specimens will be
fabricated for thermal, flammability, and mechanical properties characterization.Mechanical Engineerin
Thermodynamic Phase Diagram of the Quantum Hall Skyrmion System
We numerically study the interacting quantum Hall skyrmion system based on
the Chern-Simons action. By noticing that the action is invariant under global
spin rotations in the spin space with respect to the magnetic field direction,
we obtain the low-energy effective action for a many skyrmion system.
Performing extensive molecular dynamics simulations, we establish the
thermodynamic phase diagram for a many skyrmion system.Comment: 4 pages, RevTex, 2 postscript figure
Compaction and dilation rate dependence of stresses in gas-fluidized beds
A particle dynamics-based hybrid model, consisting of monodisperse spherical
solid particles and volume-averaged gas hydrodynamics, is used to study
traveling planar waves (one-dimensional traveling waves) of voids formed in
gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging
in a co-traveling frame, we compute solid phase continuum variables (local
volume fraction, average velocity, stress tensor, and granular temperature)
across the waves, and examine the relations among them. We probe the
consistency between such computationally obtained relations and constitutive
models in the kinetic theory for granular materials which are widely used in
the two-fluid modeling approach to fluidized beds. We demonstrate that solid
phase continuum variables exhibit appreciable ``path dependence'', which is not
captured by the commonly used kinetic theory-based models. We show that this
path dependence is associated with the large rates of dilation and compaction
that occur in the wave. We also examine the relations among solid phase
continuum variables in beds of cohesive particles, which yield the same path
dependence. Our results both for beds of cohesive and non-cohesive particles
suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect
analysis added
Recommended from our members
Polyamide 11-Carbon Nanotubes Nanocomposites: Preliminary Investigation
The objective of this research is to develop an improved polyamide 11 (PA11) polymer with
enhanced flame retardancy, thermal, and mechanical properties for selective laser sintering
(SLS) rapid manufacturing. In the present study, a nanophase was introduced into polyamide 11
via twin screw extrusion. Arkema Rilsan® polyamide 11 molding polymer pellets were used
with 1, 3, 5, and 7 wt% loadings of Arkema’s GraphistrengthTM multi-wall carbon nanotubes
(MWNTs) to create a family of PA11-MWNT nanocomposites.
Transmission electron microscopy and scanning electron microscopy were used to determine
the degree and uniformity of dispersion. Injection molded test specimens were fabricated for
physical, thermal, mechanical properties, and flammability measurements. Thermal stability of
these polyamide 11-MWNT nanocomposites was examined by TGA. Mechanical properties such
as ultimate tensile strength, rupture tensile strength, and elongation at rupture were measured.
Flammability properties were also obtained using the UL 94 test method. All these different
methods and subsequent polymer characteristics are discussed in this paper.Mechanical Engineerin
- …