284,270 research outputs found

    Antikaon flow in heavy-ion collisions: the effects of absorption and mean fields

    Get PDF
    We study antikaon flow in heavy-ion collisions at SIS energies based on the relativistic transport model (RVUU 1.0). The production of antikaons from both baryon-baryon and pion-baryon collisions are included. Taking into account only elastic and inelastic collisions of the antikaon with nucleons and neglecting its mean-field potential as in the cascade model, a strong antiflow or anti-correlation of antikaons with respect to nucleons is seen as a result of the strong absorption of antikaons by nucleons. However, the antiflow of antikaons disappears after including also their propagation in the attractive mean-field potential. The experimental measurement of antikaon flow in heavy-ion collision will be very useful in shedding lights on the relative importance of antikaon absorption versus its mean-field potential.Comment: 12 pages, 2 postscript figures omitted in the original submission are included, to appear in Phys. Rev.

    Antiproton production in Ni+Ni collisions at 1.85 GeV/nucleon

    Get PDF
    Antiproton production in Ni+Ni collisions at 1.85 GeV/nucleon is studied in the relativistic Vlasov-Uehling-Uhlenbeck model. The self-energies of the antiproton are determined from the nucleon self-energies by the G-parity transformation. Also, the final-state interactions of the antiproton including both rescattering and annihilation are explicitly treated. With a soft nuclear equation of state, the calculated antiproton momentum spectrum is in good agreement with recent experimental data from the heavy-ion synchrotron at GSI. The effect due to the reduced nucleon and antinucleon masses in a medium is found to be more appreciable than in earlier Bevalac experiments with lighter systems and at higher energies.Comment: 10 pages, 4 figures available upon request to [email protected]. TAMUNT-940

    Sensitivity of neutron radii in the ""sup208Pbnucleusandaneutronstartonucleon−"" sup 208_Pb nucleus and a neutron star to nucleon- sigma_-$ rho_ coupling corrections in relativistic mean field theory

    Full text link
    We study the sensitivity of the neutron skin thickness, SS, in a 208^{208}Pb nucleus to the addition of nucleon-sigma-rho coupling corrections to a selection (PK1, NL3, S271, Z271) of interactions in relativistic mean field model. The PK1 and NL3 effective interactions lead to a minimum value of SS = 0.16 fm in comparison with the original value of SS = 0.28 fm. The S271 and Z271 effective interactions yield even smaller values of SS = 0.11 fm, which are similar to those for nonrelativistic mean field models. A precise measurement of the neutron radius, and therefore SS, in 208^{208}Pb will place an important constraint on both relativistic and nonrelativistic mean field models. We also study the correlation between the radius of a 1.4 solar-mass neutron star and SS.Comment: 40 pages 13 figures. to be published in Physical Review
    • 

    corecore