484 research outputs found

    Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity

    Get PDF
    BACKGROUND. Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1a,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). METHODS AND FINDINGS. To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1a,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity. CONCLUSIONS. We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.National Institutes of Health (R01A052190

    20-Hydroxycholecalciferol, Product of Vitamin D3 Hydroxylation by P450scc, Decreases NF-κB Activity by Increasing IκBα Levels in Human Keratinocytes

    Get PDF
    The side chain of vitamin D3 is hydroxylated in a sequential manner by cytochrome P450scc (CYP11A1) to form 20-hydroxycholecalciferol, which can induce growth arrest and differentiation of both primary and immortalized epidermal keratinocytes. Since nuclear factor-κB (NF-κB) plays a pivotal role in the regulation of cell proliferation, differentiation and apoptosis, we examined the capability of 20-hydroxycholecalciferol to modulate the activity of NF-κB, using 1,25-dihydroxycholecalciferol (calcitriol) as a positive control. 20-hydroxycholecalciferol inhibits the activation of NFκB DNA binding activity as well as NF-κB-driven reporter gene activity in keratinocytes. Also, 20-hydroxycholecalciferol induced significant increases in the mRNA and protein levels of the NF-κB inhibitor protein, IκBα, in a time dependent manner, while no changes in total NF-κB-p65 mRNA or protein levels were observed. Another measure of NF-κB activity, p65 translocation from the cytoplasm into the nucleus was also inhibited in extracts of 20-hydroxycholecalciferol treated keratinocytes. Increased IκBα was concomitantly observed in cytosolic extracts of 20-hydroxycholecalciferol treated keratinocytes, as determined by immunoblotting and immunofluorescent staining. In keratinocytes lacking vitamin D receptor (VDR), 20-hydroxycholecalciferol did not affect IκBα mRNA levels, indicating that it requires VDR for its action on NF-κB activity. Comparison of the effects of calcitrol, hormonally active form of vitamin D3, with 20-hydrocholecalciferol show that both agents have a similar potency in inhibiting NF-κB. Since NF-κB is a major transcription factor for the induction of inflammatory mediators, our findings indicate that 20-hydroxycholecalciferol may be an effective therapeutic agent for inflammatory and hyperproliferative skin diseases

    Characterization of a new pathway that activates lumisterol <i>in vivo</i> to biologically active hydroxylumisterols

    Get PDF
    Abstract Using LC/qTOF-MS we detected lumisterol, 20-hydroxylumisterol, 22-hydroxylumisterol, 24-hydroxylumisterol, 20,22-dihydroxylumisterol, pregnalumisterol, 17-hydroxypregnalumisterol and 17,20-dihydroxypregnalumisterol in human serum and epidermis, and the porcine adrenal gland. The hydroxylumisterols inhibited proliferation of human skin cells in a cell type-dependent fashion with predominant effects on epidermal keratinocytes. They also inhibited melanoma proliferation in both monolayer and soft agar. 20-Hydroxylumisterol stimulated the expression of several genes, including those associated with keratinocyte differentiation and antioxidative responses, while inhibiting the expression of others including RORA and RORC. Molecular modeling and studies on VDRE-transcriptional activity excludes action through the genomic site of the VDR. However, their favorable interactions with the A-pocket in conjunction with VDR translocation studies suggest they may act on this non-genomic VDR site. Inhibition of RORα and RORγ transactivation activities in a Tet-on CHO cell reporter system, RORα co-activator assays and inhibition of (RORE)-LUC reporter activity in skin cells, in conjunction with molecular modeling, identified RORα and RORγ as excellent receptor candidates for the hydroxylumisterols. Thus, we have discovered a new biologically relevant, lumisterogenic pathway, the metabolites of which display biological activity. This opens a new area of endocrine research on the effects of the hydroxylumisterols on different pathways in different cells and the mechanisms involved

    Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

    Get PDF
    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation

    Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects

    Get PDF
    Skeletal muscle is a heterogenous and metabolically active tissue, the composition of which is associated with multiple traits. The aim of the study was to determine whether there are additional health and exercise-related traits associated with muscle fiber composition in athletes and non-athletes. This study recruited 164 Russian participants (51 endurance and 48 power athletes; 65 controls). Vastus lateralis muscle fiber composition was assessed by immunohistochemistry. Slow-twitch muscle fiber percentage (STMF%) was significantly greater in endurance than power athletes and non-athletes, and in non-athlete females than males. STMF% was positively associated with athletes’ training frequency, non-athletes’ and endurance athletes’ age, endurance athletes’ competition level and chest depth, and power athletes’ training age. STMF% was negatively associated with diastolic blood pressure in power athletes and with systolic blood pressure and reaction time in non-athletes. In all participants, STMF% was positively associated with age, tolerance to long distance exercise, chest depth and fracture incidence, and negatively with systolic blood pressure and resting heart rate. Age, sex and training frequency explained 10.6% and 13.2% of the variance in STMF% in endurance and power athletes, respectively. This is one of the most comprehensive studies involving athletes and untrained subjects and provides novel information concerning associations of increased STMF percentage with lower resting heart rate, better tolerance to long distances, faster reaction time and larger chest depth. On the other hand, the increased percentage of fast-twitch muscle fibers was associated with rare fracture incidence

    Disparities in the Operative Experience Between Female and Male General Surgery Residents: A Multi-institutional Study From the US ROPE Consortium

    Get PDF
    OBJECTIVE: To examine differences in resident operative experience between male and female general surgery residents. BACKGROUND: Despite increasing female representation in surgery, sex and gender disparities in residency experience continue to exist. The operative volume of male and female general surgery residents has not been compared on a multi-institutional level. METHODS: Demographic characteristics and case logs were obtained for categorical general surgery graduates between 2010 and 2020 from the US Resident OPerative Experience Consortium database. Univariable, multivariable, and linear regression analyses were performed to compare differences in operative experience between male and female residents. RESULTS: There were 1343 graduates from 20 Accreditation Council for Graduate Medical Education-accredited programs, and 476 (35%) were females. There were no differences in age, race/ethnicity, or proportion pursuing fellowship between groups. Female graduates were less likely to be high-volume residents (27% vs 36%, P \u3c 0.01). On univariable analysis, female graduates performed fewer total cases than male graduates (1140 vs 1177, P \u3c 0.01), largely due to a diminished surgeon junior experience (829 vs 863, P \u3c 0.01). On adjusted multivariable analysis, female sex was negatively associated with being a high-volume resident (OR = 0.74, 95% CI: 0.56 to 0.98, P = 0.03). Over the 11-year study period, the annual total number of cases increased significantly for both groups, but female graduates (+16 cases/year) outpaced male graduates (+13 cases/year, P = 0.02). CONCLUSIONS: Female general surgery graduates performed significantly fewer cases than male graduates. Reassuringly, this gap in operative experience may be narrowing. Further interventions are warranted to promote equitable training opportunities that support and engage female residents

    HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6

    Get PDF
    The innate immune response constitutes the first line of defense against infections. Pattern recognition receptors recognize pathogen structures and trigger intracellular signaling pathways leading to cytokine and chemokine expression. Reactive oxygen species (ROS) are emerging as an important regulator of some of these pathways. ROS directly interact with signaling components or induce other post-translational modifications such as S-glutathionylation, thereby altering target function. Applying live microscopy, we have demonstrated that herpes simplex virus (HSV) infection induces early production of ROS that are required for the activation of NF-κB and IRF-3 pathways and the production of type I IFNs and ISGs. All the known receptors involved in the recognition of HSV were shown to be dependent on the cellular redox levels for successful signaling. In addition, we provide biochemical evidence suggesting S-glutathionylation of TRAF family proteins to be important. In particular, by performing mutational studies we show that S-glutathionylation of a conserved cysteine residue of TRAF3 and TRAF6 is important for ROS-dependent activation of innate immune pathways. In conclusion, these findings demonstrate that ROS are essential for effective activation of signaling pathways leading to a successful innate immune response against HSV infection
    corecore