50,485 research outputs found

    Special Lagrangian submanifolds of log Calabi-Yau manifolds

    Full text link
    We study the existence of special Lagrangian submanifolds of log Calabi-Yau manifolds equipped with the complete Ricci-flat K\"ahler metric constructed by Tian-Yau. We prove that if XX is a Tian-Yau manifold, and if the compact Calabi-Yau manifold at infinty admits a single special Lagrangian, then XX admits infinitely many disjoint special Lagrangians. In complex dimension 22, we prove that if YY is a del Pezzo surface, or a rational elliptic surface, and DKYD\in |-K_{Y}| is a smooth divisor with D2=dD^2=d, then X=Y\DX= Y\backslash D admits a special Lagrangian torus fibration, as conjectured by Strominger-Yau-Zaslow and Auroux. In fact, we show that XX admits twin special Lagrangian fibrations, confirming a prediction of Leung-Yau. In the special case that YY is a rational elliptic surface, or Y=P2Y= \mathbb{P}^2 we identify the singular fibers for generic data, thereby confirming two conjectures of Auroux. Finally, we prove that after a hyper-K\"ahler rotation, XX can be compactified to the complement of a Kodaira type IdI_{d} fiber appearing as a singular fiber in a rational elliptic surface πˇ:YˇP1\check{\pi}: \check{Y}\rightarrow \mathbb{P}^1.Comment: 70 pages. Updates and improvements. To appear in Duke Mathematical Journa

    Corrections to Chiral Dynamics of Heavy Hadrons: SU(3) Symmetry Breaking, (with some minor corrections)

    Full text link
    In previous publications we have analyzed the strong and electromagnetic decays of heavy mesons and heavy baryons in a formalism which incorporates heavy-quark and chiral symmetries. There are two possible symmetry-breaking effects on the chiral dynamics of heavy hadrons: the finite-mass effects from light quarks and the 1/mQ1/ m_Q corrections from heavy quarks. In the present paper, chiral-symmetry-breaking effects are studied and applications to various strong and radiative decays of heavy hadrons are illustrated. SU(3) violations induced by chiral loops in the radiative decays of charmed mesons and charmed baryons are compared with those predicted by the constituent quark model. In particular, available data for DD^* decays favor values of the parameters in chiral perturbation theory which give predictions for DD^* decays close to the quark model results except for the Ds+D^{*+}_s. Implications are discussed.Comment: PHYZZX, 56 pages and 8 figures (available upon request), CLNS 93/1189, IP-ASTP-01-9

    Study of ΛbΛ(ϕ,η())\Lambda_b\to \Lambda (\phi,\eta^{(\prime)}) and ΛbΛK+K\Lambda_b\to \Lambda K^+K^- decays

    Full text link
    We study the charmless two-body ΛbΛ(ϕ,η())\Lambda_b\to \Lambda (\phi,\eta^{(\prime)}) and three-body ΛbΛK+K\Lambda_b\to \Lambda K^+K^- decays. We obtain B(ΛbΛϕ)=(3.53±0.24)×106{\cal B}(\Lambda_b\to \Lambda\phi)=(3.53\pm 0.24)\times 10^{-6} to agree with the recent LHCb measurement. However, we find that B(ΛbΛ(ϕ)K+K)=(1.71±0.12)×106{\cal B}(\Lambda_b\to \Lambda(\phi\to)K^+ K^-)=(1.71\pm 0.12)\times 10^{-6} is unable to explain the LHCb observation of B(ΛbΛK+K)=(15.9±1.2±1.2±2.0)×106{\cal B}(\Lambda_b\to\Lambda K^+ K^-)=(15.9\pm 1.2\pm 1.2\pm 2.0)\times 10^{-6}, which implies the possibility for other contributions, such as that from the resonant ΛbKN,NΛK+\Lambda_b\to K^- N^*,\,N^*\to\Lambda K^+ decay with NN^* as a higher-wave baryon state. For ΛbΛη()\Lambda_b\to \Lambda \eta^{(\prime)}, we show that B(ΛbΛη,Λη)=(1.47±0.35,1.83±0.58)×106{\cal B}(\Lambda_b\to \Lambda\eta,\,\Lambda\eta^\prime)= (1.47\pm 0.35,1.83\pm 0.58)\times 10^{-6}, which are consistent with the current data of (9.35.3+7.3,<3.1)×106(9.3^{+7.3}_{-5.3},<3.1)\times 10^{-6}, respectively. Our results also support the relation of B(ΛbΛη)B(ΛbΛη){\cal B}(\Lambda_b\to \Lambda\eta) \simeq {\cal B}(\Lambda_b\to\Lambda\eta^\prime), given by the previous study.Comment: 8 pages, 1 figure, revised version accepted by EPJ

    Hypervelocity binary stars: smoking gun of massive binary black holes

    Full text link
    The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.Comment: 5 pages, 3 figures, shortened version, ApJL in pres

    Finite-size scaling of pseudo-critical point distributions in the random transverse-field Ising chain

    Full text link
    We study the distribution of finite size pseudo-critical points in a one-dimensional random quantum magnet with a quantum phase transition described by an infinite randomness fixed point. Pseudo-critical points are defined in three different ways: the position of the maximum of the average entanglement entropy, the scaling behavior of the surface magnetization, and the energy of a soft mode. All three lead to a log-normal distribution of the pseudo-critical transverse fields, where the width scales as L1/νL^{-1/\nu} with ν=2\nu=2 and the shift of the average value scales as L1/νtypL^{-1/\nu_{typ}} with νtyp=1\nu_{typ}=1, which we related to the scaling of average and typical quantities in the critical region.Comment: 4 pages, 2 figure

    Investigation of the 1+1 dimensional Thirring model using the method of matrix product states

    Full text link
    We present preliminary results of a study on the non-thermal phase structure of the (1+1) dimensional massive Thirring model, employing the method of matrix product states. Through investigating the entanglement entropy, the fermion correlators and the chiral condensate, it is found that this approach enables us to observe numerical evidence of a Kosterlitz-Thouless phase transition in the model.Comment: 7 pages, 4 figures; contribution to the proceedings of Lattice 2018 conferenc

    Seebeck Coefficients in Nanoscale Junctions: Effects of Electron-vibration Scattering and Local Heating

    Full text link
    We report first-principles calculations of inelastic Seebeck coefficients in an aluminum monatomic junction. We compare the elastic and inelastic Seebeck coefficients with and without local heating. In the low temperature regime, the signature of normal modes in the profiles of the inelastic Seebeck effects is salient. The inelastic Seebeck effects are enhanced by the normal modes, and further magnified by local heating. In the high temperature regime, the inelastic Seebeck effects are weakly suppressed due to the quasi-ballistic transport.Comment: 3 Figure
    corecore