262 research outputs found

    Regeneration of begonia plantlets by direct organogenesis

    Get PDF
    The economic importance of ornamentals worldwide suggests a bright future for ornamental breeding. Rapid progress in plant molecular biology has great potentials to contribute to the breeding of novel ornamental plants utilizing recombinant DNA technology. The plant cell, tissue or organ culture of many ornamental species and their regeneration are essential for providing the material and systems for their genetic manipulation, and this is therefore the first requirement of genetic engineering. In this research, different concentration of BA (0.0, 0.5, 1.0, 2.0 mgl(-1) with NAA ( 0.0, 0.5, 1.0 mgl(-1)) and BA (0.0, 0.5, 1.0, 2.0 mgl(-1)) with IAA ( 0.0, 0.5, 1.0, mgl(-1)) were investigated to optimize regeneration of Begonia elatior cv. Toran orange. The best regeneration and growth were obtained from the media containing 2.0 mgl(-1) BA and 1.0 mgl(-1) NAA (70%) followed by 1.0 mgl(-1) BA and 0.5 mgl(-1) NAA (50%), 1.0 mgl(-1) BA and 1.0 mgl(-1) NAA (20%) in BA - NAA combination. The media with BA - IAA combination showed that the best regeneration was 0.5 mgl(-1) BA and 0.5 mgl(-1) IAA (43%) followed by 0.5 mgl(-1) BA and 1.0 mgl(-1) IAA (23%)

    Multi-objective variational curves

    Full text link
    Riemannian cubics in tension are critical points of the linear combination of two objective functionals, namely the squared norms of the velocity and acceleration of a curve on a Riemannian manifold. We view this variational problem of finding a curve as a multi-objective optimization problem and construct the Pareto fronts for some given instances where the manifold is a sphere and where the manifold is a torus. The Pareto front for the curves on the torus turns out to be particularly interesting: the front is disconnected and it reveals two distinct Riemannian cubics with the same boundary data, which is the first known nontrivial instance of this kind. We also discuss some convexity conditions involving the Pareto fronts for curves on general Riemannian manifolds

    A primal--dual algorithm as applied to optimal control problems

    Full text link
    We propose a primal--dual technique that applies to infinite dimensional equality constrained problems, in particular those arising from optimal control. As an application of our general framework, we solve a control-constrained double integrator optimal control problem and the challenging control-constrained free flying robot optimal control problem by means of our primal--dual scheme. The algorithm we use is an epsilon-subgradient method that can also be interpreted as a penalty function method. We provide extensive comparisons of our approach with a traditional numerical approach
    corecore