1,715 research outputs found

    Observation of Heteronuclear Feshbach Molecules from a 85^{85}Rb - 87^{87}Rb gas

    Full text link
    We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a 87^{87}Rb BEC and a cold atomic gas of 85^{85}Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even though the 85^{85}Rb gas is non-degenerate we observe a large molecular conversion efficiency due to the presence of a quantum degenerate 87^{87}Rb gas; this represents a key feature of our system. We compare the molecule creation at two different Feshbach resonances with different magnetic-field widths. The two Feshbach resonances are located at 265.44±0.15265.44\pm0.15 G and 372.4±1.3372.4\pm1.3 G. We also directly measure the small binding energy of the molecules through resonant magnetic-field association.Comment: v2 - minor change

    Spontaneous Dissociation of 85Rb Feshbach Molecules

    Get PDF
    The spontaneous dissociation of 85Rb dimers in the highest lying vibrational level has been observed in the vicinity of the Feshbach resonance which was used to produce them. The molecular lifetime shows a strong dependence on magnetic field, varying by three orders of magnitude between 155.5 G and 162.2 G. Our measurements are in good agreement with theoretical predictions in which molecular dissociation is driven by inelastic spin relaxation. Molecule lifetimes of tens of milliseconds can be achieved close to resonance.Comment: 4 pages, 3 figure

    Quantifying critical thinking: Development and validation of the Physics Lab Inventory of Critical thinking (PLIC)

    Full text link
    Introductory physics lab instruction is undergoing a transformation, with increasing emphasis on developing experimentation and critical thinking skills. These changes present a need for standardized assessment instruments to determine the degree to which students develop these skills through instructional labs. In this article, we present the development and validation of the Physics Lab Inventory of Critical thinking (PLIC). We define critical thinking as the ability to use data and evidence to decide what to trust and what to do. The PLIC is a 10-question, closed-response assessment that probes student critical thinking skills in the context of physics experimentation. Using interviews and data from 5584 students at 29 institutions, we demonstrate, through qualitative and quantitative means, the validity and reliability of the instrument at measuring student critical thinking skills. This establishes a valuable new assessment instrument for instructional labs.Comment: 16 pages, 4 figure

    Studying a dual-species BEC with tunable interactions

    Get PDF
    We report on the observation of controllable spatial separation in a dual-species Bose-Einstein condensate (BEC) with 85^{85}Rb and 87^{87}Rb. Interparticle interactions between the different components can change the miscibility of the two quantum fluids. In our experiments, we clearly observe the immiscible nature of the two simultaneously Bose-condensed species via their spatial separation. Furthermore the 85^{85}Rb Feshbach resonance near 155 G is used to change them between miscible and immiscible by tuning the 85^{85}Rb scattering length. Our apparatus is also able to create 85^{85}Rb condensates with up to 8×1048\times10^4 atoms which represents a significant improvement over previous work

    Reforming a large lecture modern physics course for engineering majors using a PER-based design

    Get PDF
    We have reformed a large lecture modern physics course for engineering majors by radically changing both the content and the learning techniques implemented in lecture and homework. Traditionally this course has been taught in a manner similar to the equivalent course for physics majors, focusing on mathematical solutions of abstract problems. Based on interviews with physics and engineering professors, we developed a syllabus and learning goals focused on content that was more useful to our actual student population: engineering majors. The content of this course emphasized reasoning development, model building, and connections to real world applications. In addition we implemented a variety of PER-based learning techniques, including peer instruction, collaborative homework sessions, and interactive simulations. We have assessed the effectiveness of reforms in this course using pre/post surveys on both content and beliefs. We have found significant improvements in both content knowledge and beliefs compared with the same course before implementing these reforms and a corresponding course for physics majors.Comment: To be published in the Proceedings of the Physics Education Research Conference 200

    Towards characterizing the relationship between students' interest in and their beliefs about physics

    Get PDF
    We examine the relationships between students' self-reported interest and their responses to a physics beliefs survey. Results from the Colorado Learning Attitudes about Science Survey (CLASS v3), collected in a large calculusbased introductory mechanics course (N=391), were used to characterize students' beliefs about physics and learning physics at the beginning and end of the semester. Additionally students were asked at the end of the semester to rate their interest in physics, how it has changed, and why. We find a correlation between surveyed beliefs and self-rated interest (R=0.65). At the end of the term, students with more expert-like beliefs as measured by the 'Overall' CLASS score also rate themselves as more interested in physics. An analysis of students' reasons for why their interest changed showed that a sizable fraction of students cited reasons tied to beliefs about physics or learning physics as probed by the CLASS survey. The leading reason for increased interest was the connection between physics and the real world

    Chemistry vs. Physics: A Comparison of How Biology Majors View Each Discipline

    Get PDF
    A student's beliefs about science and learning science may be more or less sophisticated depending on the specific science discipline. In this study, we used the physics and chemistry versions of the Colorado Learning Attitudes about Science Survey (CLASS) to measure student beliefs in the large, introductory physics and chemistry courses, respectively. We compare how biology majors -- generally required to take both of the courses -- view these two disciplines. We find that these students' beliefs are more sophisticated about physics (more like the experts in that discipline) than they are about chemistry. At the start of the term, the average % Overall Favorable score on the CLASS is 59% in physics and 53% in chemistry. The students' responses are statistically more expert-like in physics than in chemistry on 10 statements (P lesser-than-or-equal-to 0.01), indicating that these students think chemistry is more about memorizing disconnected pieces of information and sample problems, and has less to do with the real world. In addition, these students' view of chemistry degraded over the course of the term. Their favorable scores shifted -5.7% and -13.5% in 'Overall' and the 'Real World Connection' category, respectively; in the physics course, which used a variety of research-based teaching practices, these scores shifted 0.0% and +0.3%, respectively. The chemistry shifts are comparable to those previously observed in traditional introductory physics courses
    corecore