294 research outputs found

    The Challenge of Unifying Semantic and Syntactic Inference Restrictions

    No full text
    While syntactic inference restrictions don't play an important role for SAT, they are an essential reasoning technique for more expressive logics, such as first-order logic, or fragments thereof. In particular, they can result in short proofs or model representations. On the other hand, semantically guided inference systems enjoy important properties, such as the generation of solely non-redundant clauses. I discuss to what extend the two paradigms may be unifiable

    On the Expressivity and Applicability of Model Representation Formalisms

    No full text
    A number of first-order calculi employ an explicit model representation formalism for automated reasoning and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus. Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus, to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism

    Unification in sort theories and its applications

    No full text
    In this article I investigate the properties of unification in sort theories. The usual notion of a sort consisting of a sort symbol is extended to a set of sort symbols. In this language sorted unification in elementary sort theories is of unification type finitary. The rules of standard unification with the addition of four sorted rules form the new sorted unification algorithm. The algorithm is proved sound and complete. The rule based form of the algorithm is not suitable for an implementation because there is no control and the used data structures are weak. Therefore we transform the algorithm into a deterministic sorted unification procedure. For the procedure sorted unification in pseudo-linear sort theories is proved decidable. The notions of a sort and a sort theory are developed in a way such that a standard calculus can be turned into a sorted calculus by replacing standard unification with sorted unification. To this end sorts may denote the empty set. Sort theories may contain clauses with more than one declaration and may change dynamically during the deduction process. The applicability of the approach is exemplified for the resolution and the tableau calculus

    A Dynamic Logic for Configuration

    No full text

    A Posthumous Contribution by {Larry Wos}: {E}xcerpts from an Unpublished Column

    Get PDF
    International audienceShortly before Larry Wos passed away, he sent a manuscript for discussion to Sophie Tourret, the editor of the AAR newsletter. We present excerpts from this final manuscript, put it in its historic context and explain its relevance for today’s research in automated reasoning

    Superposition for Finite Domains

    Get PDF

    Semantic Relevance

    Get PDF
    International audienceAbstract A clause C is syntactically relevant in some clause set N , if it occurs in every refutation of N . A clause C is syntactically semi-relevant, if it occurs in some refutation of N . While syntactic relevance coincides with satisfiability (if C is syntactically relevant then N{C}N\setminus \{C\} N \ { C } is satisfiable), the semantic counterpart for syntactic semi-relevance was not known so far. Using the new notion of a conflict literal we show that for independent clause sets N a clause C is syntactically semi-relevant in the clause set N if and only if it adds to the number of conflict literals in N . A clause set is independent, if no clause out of the clause set is the consequence of different clauses from the clause set. Furthermore, we relate the notion of relevance to that of a minimally unsatisfiable subset (MUS) of some independent clause set N . In propositional logic, a clause C is relevant if it occurs in all MUSes of some clause set N and semi-relevant if it occurs in some MUS. For first-order logic the characterization needs to be refined with respect to ground instances of N and C

    {SCL(EQ)}: {SCL} for First-Order Logic with Equality

    Get PDF
    International audienceAbstract We propose a new calculus SCL(EQ) for first-order logic with equality that only learns non-redundant clauses. Following the idea of CDCL (Conflict Driven Clause Learning) and SCL (Clause Learning from Simple Models) a ground literal model assumption is used to guide inferences that are then guaranteed to be non-redundant. Redundancy is defined with respect to a dynamically changing ordering derived from the ground literal model assumption. We prove SCL(EQ) sound and complete and provide examples where our calculus improves on superposition

    Decidability Results for Saturation-based Model Building

    Get PDF
    Saturation-based calculi such as superposition can be successfully instantiated to decision procedures for many decidable fragments of first-order logic. In case of termination without generating an empty clause, a saturated clause set implicitly represents a minimal model for all clauses, based on the underlying term ordering of the superposition calculus. In general, it is not decidable whether a ground atom, a clause or even a formula holds in this minimal model of a satisfiable saturated clause set. Based on an extension of our superposition calculus for fixed domains with syntactic disequality constraints in a non-equational setting, we describe models given by ARM (Atomic Representations of term Models) or DIG (Disjunctions of Implicit Generalizations) representations as minimal models of finite saturated clause sets. This allows us to present several new decidability results for validity in such models. These results extend in particular the known decidability results for ARM and DIG representations
    corecore