9 research outputs found

    HCC recurrence in HCV-infected patients after liver transplantation: SiLVER Study reveals benefits of sirolimus in combination with CNIs - a post-hoc analysis

    Get PDF
    Factors affecting outcomes in liver transplant (LTx) recipients with hepatocellular carcinoma (HCC) and hepatitis C viral (HCV) infection include the choice of immunosuppression. Here, we analyzed the HCV+ subgroup of patients from the randomized controlled, international SiLVER Study. We performed a post hoc analysis of 166 HCV+ SiLVER Study patients regarding HCC outcome after LTx. Control patients (group A: n = 88) received mTOR inhibitor (mTORi)-free, calcineurin inhibitor (CNI)-based versus sirolimus-based immunosuppression (group B: n = 78). We found no significant difference regarding HCV-RNA titers between group A and B. Since no effect in group B could be due to variable sirolimus dosing, we split group B into patients receiving sirolimus-based immunosuppression + CNIs for >50% (B1; n = 44) or <50% (B2; n = 34) of the time. While there remained no difference in HCV-RNA titer between groups, HCC recurrence-free survival in group B1 (81.8%) was markedly better versus both group A (62.7%; P = 0.0136) and group B2 (64.7%; P = 0.0326); Interestingly, further subgroup analysis revealed an increase (P = 0.0012) in liver enzyme values in group B2. Taken together, in HCV-infected patients with HCC and LTx, mTORi immunosuppression + CNIs yields excellent outcomes. Unexpectedly, higher levels of liver inflammation and poorer outcomes occur with mTORi monotherapy in the HCV+ subgroup

    From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing

    Get PDF
    Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner’s syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner’s syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed

    Language lateralization to the dominant hemisphere: Tool use, gesture and language in hominid evolution

    No full text
    corecore