1,121 research outputs found

    Dynamics of Learning with Restricted Training Sets I: General Theory

    Get PDF
    We study the dynamics of supervised learning in layered neural networks, in the regime where the size pp of the training set is proportional to the number NN of inputs. Here the local fields are no longer described by Gaussian probability distributions and the learning dynamics is of a spin-glass nature, with the composition of the training set playing the role of quenched disorder. We show how dynamical replica theory can be used to predict the evolution of macroscopic observables, including the two relevant performance measures (training error and generalization error), incorporating the old formalism developed for complete training sets in the limit α=p/N\alpha=p/N\to\infty as a special case. For simplicity we restrict ourselves in this paper to single-layer networks and realizable tasks.Comment: 39 pages, LaTe

    Ancient Egypt 1921 Part 1

    Get PDF
    Part 1 of the 1921 Ancient Egypt books. Contents include the alphabet in the XIIth dynasty, the Lahun caskets, burial rites of West Africa, a Negro captive, and Queen Tetisheri.https://knowledge.e.southern.edu/kweeks_coll/1014/thumbnail.jp

    Magnetic moment non-conservation in magnetohydrodynamic turbulence models

    Full text link
    The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment μ\mu is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ\Delta \mu (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency ωb\omega_b. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle α\alpha for a low level of magnetic fluctuation, δB/B0=(103,102)\delta B/B_0 = (10^{-3}, \, 10^{-2}), where B0B_0 is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α)f(\alpha). This is a transient regime during which magnetic moment distribution f(μ)f(\mu) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α)f(\alpha) isotropizes completely, spatial diffusion sets in and f(μ)f(\mu) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.Comment: 13 pages, 10 figures, submitted to PR

    Detection of Coulomb Charging around an Antidot in the Quantum Hall Regime

    Full text link
    We have detected oscillations of the charge around a potential hill (antidot) in a two-dimensional electron gas as a function of a large magnetic field B. The field confines electrons around the antidot in closed orbits, the areas of which are quantised through the Aharonov-Bohm effect. Increasing B reduces each state's area, pushing electrons closer to the centre, until enough charge builds up for an electron to tunnel out. This is a new form of the Coulomb blockade seen in electrostatically confined dots. Addition and excitation spectra in DC bias confirm the Coulomb blockade of tunnelling.Comment: 4 pages, 4 Postscript figure

    Shock waves in transonic channel flows at moderate Reynolds numbers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76375/1/AIAA-9312-844.pd

    Gradient descent learning in and out of equilibrium

    Full text link
    Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to study on-line Bayesian algorithms is extended to potential based or maximum likelihood learning. We look at the on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler information loss. It works by updating the weights along the gradient of an effective potential different from the parent off-line potential. The interpretation of this off equilibrium dynamics holds some similarities to the cavity approach of Griniasty. We are able to analyze networks with non-smooth transfer functions and transfer the smoothness requirement to the potential.Comment: 08 pages, submitted to the Journal of Physics

    Coulomb blockade of tunnelling through compressible rings formed around an antidot: an explanation for h/2eh/2e Aharonov-Bohm oscillations

    Full text link
    We consider single-electron tunnelling through antidot states using a Coulomb-blockade model, and give an explanation for h/2e Aharonov-Bohm oscillations, which are observed experimentally when the two spins of the lowest Landau level form bound states. We show that the edge channels may contain compressible regions, and using simple electrostatics, that the resonance through the outer spin states should occur twice per h/e period. An antidot may be a powerful tool for investigating quantum Hall edge states in general, and the interplay of spin and charging effects that occurs in quantum dots.Comment: 5 pages, 4 Postscript figure

    The discovery of a T6.5 subdwarf

    Get PDF
    We report the discovery of ULAS J131610.28+075553.0, an sdT6.5 dwarf in the UKIDSS Large Area Survey 2 epoch proper motion catalogue. This object displays significant spectral peculiarity, with the largest yet seen deviations from T6 and T7 templates in the Y and K bands for this subtype. Its large, similar to 1 arcsec yr(-1), proper motion suggests a large tangential velocity of V-tan approximate to 240-340 km s(-1), if we assume its M-J lies within the typical range for T6.5 dwarfs. This makes it a candidate for membership of the Galactic halo population. However, other metal-poor T dwarfs exhibit significant under luminosity both in specific bands and bolometrically. As a result, it is likely that its velocity is somewhat smaller, and we conclude it is a likely thick disc or halo member. This object represents the only T dwarf earlier than T8 to be classified as a subdwarf, and is a significant addition to the currently small number of known unambiguously substellar subdwarfs.Peer reviewe
    corecore