3,564 research outputs found
Air Conditions Close to the Ground and the Effect on Airplane Landings
This report presents the results of an investigation undertaken to determine the feasibility of making glide landings in gusty air. Wind velocities were measured at several stations between the ground and a height of 51 feet, and flight tests were made to determine the actual influence of gusts on an airplane gliding close to the ground
Recommended from our members
Investigations in Gallium Removal
Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated
Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots
We examine the multiple exciton population dynamics in PbS quantum dots by
ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We
simultaneously probe the first three excitonic transitions over a broad
spectral range. Transient spectra show the presence of first order bleach of
absorption for the 1S_h-1S_e transition and second order bleach along with
photoinduced absorption band for 1P_h-1P_e transition. We also report evidence
of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures
of carrier multiplication (multiexcitons for the single absorbed photon) from
analysis of the first and second order bleaches, in the limit of low absorbed
photon numbers (~ 10^-2), at pump energies from two to four times the
semiconductor band gap. The multiexciton generation efficiency is discussed
both in terms of a broadband global fit and the ratio between early- to
long-time transient absorption signals.. Analysis of population dynamics shows
that the bleach peak due to the biexciton population is red-shifted respect the
single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure
Stochastic series expansion method with operator-loop update
A cluster update (the ``operator-loop'') is developed within the framework of
a numerically exact quantum Monte Carlo method based on the power series
expansion of exp(-BH) (stochastic series expansion). The method is generally
applicable to a wide class of lattice Hamiltonians for which the expansion is
positive definite. For some important models the operator-loop algorithm is
more efficient than loop updates previously developed for ``worldline''
simulations. The method is here tested on a two-dimensional anisotropic
Heisenberg antiferromagnet in a magnetic field.Comment: 5 pages, 4 figure
The Physical Origins of Entropy Production, Free Energy Dissipation and their Mathematical Representations
A complete mathematical theory of nonequilibrium thermodynamics of stochastic
systems in terms of master equations is presented. As generalizations of
isothermal entropy and free energy, two functions of states play central roles:
the Gibbs entropy and the relative entropy , which are related via the
stationary distribution of the stochastic dynamics. satisfies the
fundamental entropy balance equation with entropy production
rate and heat dissipation rate , while . For
closed systems that satisfy detailed balance: . For open system
one has where the housekeeping heat
was first introduced in the phenomenological nonequilibrium steady state
thermodynamics. Entropy production consists of free energy dissipation
associated with spontaneous relaxation, , and active energy pumping that
sustains the open system . The amount of excess heat involved in the
relaxation .Comment: 4 pages, no figure
Duality, thermodynamics, and the linear programming problem in constraint-based models of metabolism
It is shown that the dual to the linear programming problem that arises in
constraint-based models of metabolism can be given a thermodynamic
interpretation in which the shadow prices are chemical potential analogues, and
the objective is to minimise free energy consumption given a free energy drain
corresponding to growth. The interpretation is distinct from conventional
non-equilibrium thermodynamics, although it does satisfy a minimum entropy
production principle. It can be used to motivate extensions of constraint-based
modelling, for example to microbial ecosystems.Comment: 4 pages, 2 figures, 1 table, RevTeX 4, final accepted versio
Supersymmetry in models with strong on-site Coulomb repulsion - application to t-J model
A supersymmetric way of imposing the constraint of no double occupancy in
models with strong on-site Coulomb repulsion is presented in this paper. In
this formulation the physical operators in the constrainted Hilbert space are
invariant under local unitary transformations mixing boson and fermion
representations. As an illustration the formulation is applied to the
model. The model is studied in the mean-field level in the J=0 limit where we
show how both the slave-boson and slave-fermion formulations are included
naturally in the present approach and how further results beyond both
approaches are obtained.Comment: 12 pages, Latex file, 1 figur
The role of winding numbers in quantum Monte Carlo simulations
We discuss the effects of fixing the winding number in quantum Monte Carlo
simulations. We present a simple geometrical argument as well as strong
numerical evidence that one can obtain exact ground state results for periodic
boundary conditions without changing the winding number. However, for very
small systems the temperature has to be considerably lower than in simulations
with fluctuating winding numbers. The relative deviation of a calculated
observable from the exact ground state result typically scales as ,
where the exponent is model and observable dependent and the prefactor
decreases with increasing system size. Analytic results for a quantum rotor
model further support our claim.Comment: 5 pages, 5 figure
- …