134 research outputs found

    Emergence of patterns in driven and in autonomous spatiotemporal systems

    Full text link
    The relationship between a driven extended system and an autonomous spatiotemporal system is investigated in the context of coupled map lattice models. Specifically, a locally coupled map lattice subjected to an external drive is compared to a coupled map system with similar local couplings plus a global interaction. It is shown that, under some conditions, the emergent patterns in both systems are analogous. Based on the knowledge of the dynamical responses of the driven lattice, we present a method that allows the prediction of parameter values for the emergence of ordered spatiotemporal patterns in a class of coupled map systems having local coupling and general forms of global interactions.Comment: 7 pages, 3 figs, submitted to PRE (2002

    Kink-induced transport and segregation in oscillated granular layers

    Get PDF
    We use experiments and molecular dynamics simulations of vertically oscillated granular layers to study horizontal particle segregation induced by a kink (a boundary between domains oscillating out of phase). Counter-rotating convection rolls carry the larger particles in a bidisperse layer along the granular surface to a kink, where they become trapped. The convection originates from avalanches that occur inside the layer, along the interface between solidified and fluidized grains. The position of a kink can be controlled by modulation of the container frequency, making possible systematic harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let

    Solitary vortex couples in viscoelastic Couette flow

    Full text link
    We report experimental observation of a localized structure, which is of a new type for dissipative systems. It appears as a solitary vortex couple ("diwhirl") in Couette flow with highly elastic polymer solutions. A unique property of the diwhirls is that they are stationary, in contrast to the usual localized wave structures in both Hamiltonian and dissipative systems which are stabilized by wave dispersion. It is also a new object in fluid dynamics - a couple of vortices that build a single entity somewhat similar to a magnetic dipole. The diwhirls arise as a result of a purely elastic instability through a hysteretic transition at negligible Reynolds numbers. It is suggested that the vortex flow is driven by the same forces that cause the Weissenberg effect. The diwhirls have a striking asymmetry between the inflow and outflow, which is also an essential feature of the suggested elastic instability mechanism.Comment: 9 pages (LaTeX), 5 Postscript figures, submitte

    Stationary and Oscillatory Spatial Patterns Induced by Global Periodic Switching

    Full text link
    We propose a new mechanism for pattern formation based on the global alternation of two dynamics neither of which exhibits patterns. When driven by either one of the separate dynamics, the system goes to a spatially homogeneous state associated with that dynamics. However, when the two dynamics are globally alternated sufficiently rapidly, the system exhibits stationary spatial patterns. Somewhat slower switching leads to oscillatory patterns. We support our findings by numerical simulations and discuss the results in terms of the symmetries of the system and the ratio of two relevant characteristic times, the switching period and the relaxation time to a homogeneous state in each separate dynamics.Comment: REVTEX preprint: 12 pages including 1 (B&W) + 3 (COLOR) figures (to appear in Physical Review Letters

    Continuum-type stability balloon in oscillated granular layers

    Get PDF
    The stability of convection rolls in a fluid heated from below is limited by secondary instabilities, including the skew-varicose and crossroll instabilities. We observe a stability boundary defined by the same instabilities in stripe patterns in a vertically oscillated granular layer. Molecular dynamics simulations show that the mechanism of the skew-varicose instability in granular patterns is similar to that in convection. These results suggest that pattern formation in granular media can be described by continuum models analogous to those used in fluid systems.Comment: 4 pages, 6 ps figs, submitted to PR

    Controlled Dynamics of Interfaces in a Vibrated Granular Layer

    Full text link
    We present experimental study of a topological excitation, {\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.Comment: 4 pages, 6 figures, RevTe

    Hexagons, Kinks and Disorder in Oscillated Granular Layers

    Full text link
    Experiments on vertically oscillated granular layers in an evacuated container reveal a sequence of well-defined pattern bifurcations as the container acceleration is increased. Period doublings of the layer center of mass motion and a parametric wave instability interact to produce hexagons and more complicated patterns composed of distinct spatial domains of different relative phase separated by kinks (phase discontinuities). Above a critical acceleration, the layer becomes disordered in both space and time.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "myprint" which is the defaul

    Resonant nucleation of spatio-temporal order via parametric modal amplification

    Get PDF
    We investigate, analytically and numerically, the emergence of spatio-temporal order in nonequilibrium scalar field theories. The onset of order is triggered by destabilizing interactions (DIs), which instantaneously change the interacting potential from a single to a double-well, tunable to be either degenerate (SDW) or nondegenerate (ADW). For the SDW case, we observe the emergence of spatio-temporal coherent structures known as oscillons. We show that this emergence is initially synchronized, the result of parametric amplification of the relevant oscillon modes. We also discuss how these ordered structures act as bottlenecks for equipartition. For ADW potentials, we show how the same parametric amplification mechanism may trigger the rapid decay of a metastable state. For a range of temperatures, the decay rates associated with this resonant nucleation can be orders of magnitude larger than those computed by homogeneous nucleation, with time-scales given by a simple power law, τRN∼[Eb/kBT]B\tau_{\rm RN}\sim[E_b/k_BT]^B, where BB depends weakly on the temperature and Eb/kBTE_b/k_BT is the free-energy barrier of a critical fluctuation.Comment: 38 pages, 20 figures now included within the tex
    • …
    corecore