7,187 research outputs found
Editorial: Toward a Minor Tech
This journal issue addresses what we are calling "minor tech" making reference to Gilles Deleuze and FeÌlix Guattari's essay "Kafka: Toward a Minor Literature" (written in 1975). They propose the concept of minor literature as opposed to great or established literature â the use of a major language that subverts it from within. "Becoming-minitorian" in this sense â to use a related concept from A Thousand Plateaus â involves the recognition of particular instances of power and the ability of the repressed minority to gain some degree of autonomy of expression. For our purpose, this notion of the minor is a relative position to major (or big) tech
Before and After the Network - Editorial
How do we think about networks under post- digital conditions? What does this imply for research?
This journal issue takes as its outset, the call of the transmediale festival to â[leave] be- hind a decade marked by a backlash against the Internet and the network societyâ in order to re-evaluate the limits of ânetworksâ. It refers to Robert Filliouâs âThe Eternal Network,â an idealistic notion from the 1960s, pointing to the interconnectedness of everyday-life actions across an emerging global world at that time. This is a good reminder that network cultures exist beyond the technical reality of network culture as we now know it despite our primary identification of networks with social media and planetary computation. By drawing on the legacies of critical and autonomous network cultures, the aim was to make the limits of Internet-based networks visible but also highlight alternatives. Is there a conceivable counter-power to networks? Which alternative technological models and cultural narratives are needed to construct the principles of end-to-end communication anew? How might the critique of networks extend to non-western contexts and reflect the limits in a global perspective?
To answer such complex questions, this editorial begins by reflecting on the periodizing logic that invites us to leave behind âthe backlash against the Internet.â What comes before and after the network
Infrared Spectra of Meteoritic SiC Grains
We present here the first infrared spectra of meteoritic SiC grains. The
mid-infrared transmission spectra of meteoritic SiC grains isolated from the
Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in
order to make available the optical properties of presolar SiC grains. These
grains are most likely stellar condensates with an origin predominately in
carbon stars. Measurements were performed on two different extractions of
presolar SiC from the Murchison meteorite. The two samples show very different
spectral appearance due to different grain size distributions. The spectral
feature of the smaller meteoritic SiC grains is a relatively broad absorption
band found between the longitudinal and transverse lattice vibration modes
around 11.3 micron, supporting the current interpretation about the presence of
SiC grains in carbon stars. In contrast to this, the spectral feature of the
large (> 5 micron) grains has an extinction minimum around 10 micron. The
obtained spectra are compared with commercially available SiC grains and the
differences are discussed. This comparison shows that the crystal structure
(e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the
optical signature of SiC grains compared to e.g. grain size.Comment: 7 pages, 6 figures. To appear in A&
Phase fluctuations in atomic Bose gases
We improve on the Popov theory for partially Bose-Einstein condensed atomic
gases by treating the phase fluctuations exactly. As a result, the theory
becomes valid in arbitrary dimensions and is able to describe the
low-temperature crossover between three, two and one-dimensional Bose gases,
which is currently being explored experimentally. We consider both homogeneous
and trapped Bose gases.Comment: 4 pages. Title changed Major changes involve extension of theory to
include trapped Bose gases. Deletion of reference to and comparison with
hydrogen experiment. Due to these changes, second author added. Modified
manuscript accepted for PR
Efficient calculation of local dose distribution for response modelling in proton and ion beams
We present an algorithm for fast and accurate computation of the local dose
distribution in MeV beams of protons, carbon ions or other heavy-charged
particles. It uses compound Poisson-process modelling of track interaction and
succesive convolutions for fast computation. It can handle mixed particle
fields over a wide range of fluences. Since the local dose distribution is the
essential part of several approaches to model detector efficiency or cellular
response it has potential use in ion-beam dosimetry and radiotherapy.Comment: 9 pages, 3 figure
Naturally-phasematched second harmonic generation in a whispering gallery mode resonator
We demonstrate for the first time natural phase matching for optical
frequency doubling in a high-Q whispering gallery mode resonator made of
Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt
in-coupled continuous wave pump power. The observed saturation pump power of
3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This
suggests an application of our frequency doubler as a source of non-classical
light requiring only a low-power pump, which easily can be quantum noise
limited. Our theoretical analysis of the three-wave mixing in a whispering
gallery mode resonator provides the relative conversion efficiencies for
frequency doubling in various modes
Scaling behavior in the dynamics of a supercooled Lennard-Jones mixture
We present the results of a large scale molecular dynamics computer
simulation of a binary, supercooled Lennard-Jones fluid. At low temperatures
and intermediate times the time dependence of the intermediate scattering
function is well described by a von Schweidler law. The von Schweidler exponent
is independent of temperature and depends only weakly on the type of
correlator. For long times the correlation functions show a Kohlrausch behavior
with an exponent that is independent of temperature. This dynamical
behavior is in accordance with the mode-coupling theory of supercooled liquids.Comment: 6 pages, RevTex, three postscript figures available on request,
MZ-Physics-10
- âŠ