2,430 research outputs found
The Variability of Sagittarius A* at Centimeter Wavelengths
We present the results of a 3.3-year project to monitor the flux density of
Sagittarius A* at 2.0, 1.3, and 0.7 cm with the VLA. The fully calibrated light
curves for Sgr A* at all three wavelengths are presented. Typical errors in the
flux density are 6.1%, 6.2%, and 9.2% at 2.0, 1.3, and 0.7 cm, respectively.
There is preliminary evidence for a bimodal distribution of flux densities,
which may indicate the existence of two distinct states of accretion onto the
supermassive black hole. At 1.3 and 0.7 cm, there is a tail in the distribution
towards high flux densities. Significant variability is detected at all three
wavelengths, with the largest amplitude variations occurring at 0.7 cm. The rms
deviation of the flux density of Sgr A* is 0.13, 0.16, and 0.21 Jy at 2.0, 1.3,
and 0.7 cm, respectively. During much of this monitoring campaign, Sgr A*
appeared to be relatively quiescent compared to results from previous
campaigns. At no point during the monitoring campaign did the flux density of
Sgr A* more than double its mean value. The mean spectral index of Sgr A* is
alpha=0.20+/-0.01, with a standard deviation of 0.14. The spectral index
appears to depend linearly on the observed flux density at 0.7 cm with a
steeper index observed during outbursts. This correlation is consistent with
the expectation for outbursts that are self-absorbed at wavelengths of 0.7 cm
or longer and inconsistent with the effects of simple models for interstellar
scintillation. Much of the variability of Sgr A*, including possible time lags
between flux density changes at the different wavelengths, appears to occur on
time scales less than the time resolution of our observations (8 days). Future
observations should focus on the evolution of the flux density on these time
scales.Comment: 16 pages, 10 figures, accepted for publication in A
Edge Current due to Majorana Fermions in Superfluid He A- and B-Phases
We propose a method utilizing edge current to observe Majorana fermions in
the surface Andreev bound state for the superfluid He A- and B-phases. The
proposal is based on self-consistent analytic solutions of quasi-classical
Green's function with an edge. The local density of states and edge mass
current in the A-phase or edge spin current in the B-phase can be obtained from
these solutions. The edge current carried by the Majorana fermions is partially
cancelled by quasiparticles (QPs) in the continuum state outside the superfluid
gap. QPs contributing to the edge current in the continuum state are
distributed in energy even away from the superfluid gap. The effect of Majorana
fermions emerges in the depletion of the edge current by temperature within a
low-temperature range. The observations that the reduction in the mass current
is changed by -power in the A-phase and the reduction in the spin current
is changed by -power in the B-phase establish the existence of Majorana
fermions. We also point out another possibility for observing Majorana fermions
by controlling surface roughness.Comment: 13 pages, 4 figures, published versio
Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe
Junctions and interfaces consisting of unconventional superconductors provide
an excellent experimental playground to study exotic phenomena related to the
phase of the order parameter. Not only the complex structure of unconventional
order parameters have an impact on the Josephson effects, but also may
profoundly alter the quasi-particle excitation spectrum near a junction. Here,
by using spectroscopic-imaging scanning tunneling microscopy, we visualize the
spatial evolution of the local density of states (LDOS) near twin boundaries
(TBs) of the nodal superconductor FeSe. The rotation of the
crystallographic orientation across the TB twists the structure of the
unconventional order parameter, which may, in principle, bring about a
zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in
contrast, does not exhibit any signature of a zero-energy peak and an apparent
gap amplitude remains finite all the way across the TB. The low-energy
quasiparticle excitations associated with the gap nodes are affected by the TB
over a distance more than an order of magnitude larger than the coherence
length . The modification of the low-energy states is even more
prominent in the region between two neighboring TBs separated by a distance
. In this region the spectral weight near the Fermi level
(0.2~meV) due to the nodal quasiparticle spectrum is almost
completely removed. These behaviors suggest that the TB induces a fully-gapped
state, invoking a possible twist of the order parameter structure which breaks
time-reversal symmetry.Comment: 12 pages, 6 figure
Improved gas-solid mixing and mass transfer in a pulsed fluidized bed of biomass with tapered bottom
To improve fluidization quality and mass transfer rate of biomass fluidized beds with pulsed gas flow, an existing fluidized bed with rectangular cross-section area was modified with the insertion of a tapered bottom section such that dead zones observed in the original design could be eliminated. Batch drying tests were performed as an indirect indicator of gas-solid contact efficiency and mass transfer performance. Compared to the original design, biomass particles could be fluidized at a wider range of gas pulsation frequencies with significantly reduced channeling and gas bypassing in the new tapered design. Faster drying and thus improved mass transfer were also observed in the tapered bed, as reflected by both the instantaneous drying rate and final moisture content of the sample. A simple particle drying model was applied to fit measured drying curve, and the results showed that under the same operating condition fluidized bed with a tapered bottom had a higher effective vapor diffusion coefficient compared to the original design
Ultrastructural and Immunohistochemical Studies on Uptake and Distribution of FITC-Conjugated PLGA Nanoparticles Administered Intratracheally in Rats
Polylactide-glycolide (PLGA) nanoparticles have been developed as pulmonary drug delivery carriers. To investigate their behavior, small- (d50 = 74 nm) and large-sized (d50 = 250 nm) FITC-conjugated PLGA nanoparticles were intratracheally administered to rats and were traced for 5, 30 and 60 minutes and 24 hours after administration (HAT). Immunohistochemically, a, FITC-positive reaction was observed in type-I alveolar epithelial cells (type-I AEC), endothelial cells and alveolar macrophages in the lungs from 5 minutes after treatment (MAT) to 24 HAT in both nanoparticle groups. In the kidneys, a positive reaction was observed in proximal tubular epithelial cells at 30 MAT; the reaction peaked at 60 MAT and was reduced at 24 HAT, while no positive reaction was seen in other sites. Ultrascructurally, the number of membrane-bound vesicles, which were approximately 70 nm in size and hard to distinguish from pinocytic vesicles, apparently increased in type-I AEC and endothelial cells at 5 MAT in the small-sized group, in comparison with the control group receiving physiological saline. The number of vesicles in the large-sized group was almost same as that in the control group. On the other hand, in both nanoparticle groups, lysosomes filled with nanoparticles appeared in alveolar macrophages from 30 MAT to 24 HAT. These results indicate that PLGA nanoparticles might be quickly transferred from the alveolar space to the blood vessel via type-I alveolar epithelial cells and excreted into urine, and that there is a threshold for particle size, less than approximately 70 nm in diameter, with regard to absorption through the alveolar wall
High-energy spin and charge excitations in electron-doped copper oxide superconductors
The evolution of electronic (spin and charge) excitations upon carrier doping
is an extremely important issue in superconducting layered cuprates and the
knowledge of its asymmetry between electron- and hole-dopings is still
fragmentary. Here we combine x-ray and neutron inelastic scattering
measurements to track the doping dependence of both spin and charge excitations
in electron-doped materials. Copper L3 resonant inelastic x-ray scattering
spectra show that magnetic excitations shift to higher energy upon doping.
Their dispersion becomes steeper near the magnetic zone center and deeply mix
with charge excitations, indicating that electrons acquire a highly itinerant
character in the doped metallic state. Moreover, above the magnetic
excitations, an additional dispersing feature is observed near the
{\Gamma}-point, and we ascribe it to particle-hole charge excitations. These
properties are in stark contrast with the more localized spin-excitations
(paramagnons) recently observed in hole-doped compounds even at high
doping-levels.Comment: 20 page
Singular Vortex in Narrow Cylinders of Superfluid 3He-A Phase
Motivated by the on-going rotating cryostat experiments in ISSP, Univ. of
Tokyo, we explore the textures and vortices in superfluid 3He-A phase confined
in narrow cylinders, whose radii are R=50mum and 115mum. The calculations are
based on the Ginzburg-Landau (GL) framework, which fully takes into account the
orbital (l-vector) and spin (d-vector) degrees of freedom for chiral p-wave
pairing superfluid. The GL free energy functional is solved numerically by
using best known GL parameters appropriate for the actual experimental
situations at P=3.2MPa and H=21.6mT. We identify the ground state l-vector
configuration as radial disgyration (RD) texture with the polar core both at
rest and low rotations and associated d-vector textures for both narrow
cylinder systems under high magnetic fields. The RD which has a singularity at
center, changes into Mermin-Ho texture above the critical rotation speed which
is determined precisely, providing an experimental check for own proposal.Comment: 22 pages, 12 figure
Acoustic radiation controls friction: Evidence from a spring-block experiment
Brittle failures of materials and earthquakes generate acoustic/seismic waves
which lead to radiation damping feedbacks that should be introduced in the
dynamical equations of crack motion. We present direct experimental evidence of
the importance of this feedback on the acoustic noise spectrum of
well-controlled spring-block sliding experiments performed on a variety of
smooth surfaces. The full noise spectrum is quantitatively explained by a
simple noisy harmonic oscillator equation with a radiation damping force
proportional to the derivative of the acceleration, added to a standard viscous
term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR
- …