34 research outputs found

    Parametric resonance in the Rayleigh-Duffing oscillator with time-delayed feedback

    Get PDF
    We investigate the principal parametric resonance of a Rayleigh–Duffing oscillator with time-delayed feedback position and linear velocity terms. Using the asymptotic perturbation method, we obtain two slow flow equations on the amplitude and phase of the oscillator. We study the effects of the frequency detuning, the deterministic amplitude, and the time-delay on the dynamical behaviors, such as stability and bifurcation associated with the principal parametric resonance. Moreover, the appropriate choice of the feedback gain and the time-delay is discussed from the viewpoint of vibration control. It is found that the appropriate choice of the time-delay can broaden the stable region of the non-trivial steady-state solutions and enhance the control performance. Theoretical stability analysis is verified through a numerical simulation.The University of Pretoriahttp://www.elsevier.com/locate/cnsnsai201

    Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions

    Full text link
    We study effects of Kac-Baker long-range dispersive interaction (LRI) between particles on kink properties in the discrete sine-Gordon model. We show that the kink width increases indefinitely as the range of LRI grows only in the case of strong interparticle coupling. On the contrary, the kink becomes intrinsically localized if the coupling is under some critical value. Correspondingly, the Peierls-Nabarro barrier vanishes as the range of LRI increases for supercritical values of the coupling but remains finite for subcritical values. We demonstrate that LRI essentially transforms the internal dynamics of the kinks, specifically creating their internal localized and quasilocalized modes. We also show that moving kinks radiate plane waves due to break of the Lorentz invariance by LRI.Comment: 11 pages (LaTeX) and 14 figures (Postscript); submitted to Phys. Rev.
    corecore