10 research outputs found

    The novel anti-rheumatic compound Rabeximod impairs differentiation and function of human pro-inflammatory dendritic cells and macrophages.

    No full text
    Rabeximod (9-chloro-2,3-dimethyl-6-(N,N-dimethylaminoethylamino-2-oxoethyl)-6H-indolo[2,3-b]quinoxaline) is a synthetic compound that is currently being developed for the treatment of rheumatoid arthritis (RA). Here, we investigated the effects of Rabeximod on the functionality of human antigen-presenting cells (APCs) of myeloid origin. Different subsets of professional APCs were generated from human monocytes in vitro and simultaneously treated with different doses of Rabeximod. Although Rabeximod had no effect on the differentiation of monocytes into anti-inflammatory macrophages (AI-Mϕs), this compound impaired monocyte differentiation into monocyte-derived dendritic cells (MDCs) and pro-inflammatory allostimulated macrophages (Allo-Mϕs). MDCs that were treated with Rabeximod resulted in a significant decrease in their ability to pinocytose antigens, while no effect was exerted by the drug on the ability of Allo-Mϕs and AI-Mϕs to phagocytose. Furthermore, we observed a significant reduction in the allostimulatory ability of MDCs and Allo-Mϕs after treatment with Rabeximod, although this compound did not affect the low immunostimulatory capacity of AI-Mϕs. Conversely, the effect of Rabeximod in influencing cytokine secretion by APCs appeared to be limited. In conclusion, Rabeximod impairs differentiation of monocytes into different pro-inflammatory APCs, leading to impaired immunostimulatory abilities of these cells. Our observations shed light on the cellular mode of action and the immunomodulatory effect of Rabeximod

    Human cytomegalovirus differentially controls B-cell and T–cell responses through effects on plasmacytoid dendritic cells.

    No full text
    Plasmacytoid dendritic cells (PDCs), the main producers of type I IFN in response to viral infection, are essential in antiviral immunity. In this study, we assessed the effect of human CMV (HCMV) infection on PDC function and on downstream B- and T-cell responses in vitro. HCMV infection of human PDCs was nonpermissive, as immediate-early but not late viral antigens were detected. HCMV led to partial maturation of PDCs and up-regulated MHC class II and CD83 molecules but not the costimulatory molecules CD80 and CD86. Regardless of viral replication, PDCs secreted cytokines after contact with HCMV, including IFN-alpha secretion that was blocked by inhibitory CpG, suggesting an engagement of the TLR7 and/or TLR9 pathways. In the presence of B-cell receptor stimulation, soluble factors produced by HCMV-matured PDCs triggered B-cell activation and proliferation. Through PDC stimulation, HCMV prompted B-cell activation, but only induced Ab production in the presence of T cells or T-cell secreted IL-2. Conversely, HCMV hampered the allostimulatory ability of PDCs, leading to decreased proliferation of CD4+ and CD8+ T cells. These findings reveal a novel mechanism by which HCMV differentially controls humoral and cell-mediate immune responses through effects on PDCs

    High TNF-alpha and IL-8 levels predict low blood dendritic cell counts in primary cytomegalovirus infection.

    No full text
    BACKGROUND: In vitro studies suggest that human cytomegalovirus (CMV) modulates the functions of dendritic cells (DCs). However, there are limited data on DC homeostasis in CMV-infected patients. OBJECTIVES: The aim of this study was to characterize circulating DCs and plasma cytokine levels in immunocompetent patients with primary, symptomatic CMV infections. STUDY DESIGN: The study population consisted of 14 patients suffering of CMV mononucleosis and 14 healthy volunteers (11 CMV-seropositive and 3 CMV-seronegative subjects) included as controls. Peripheral blood mononuclear cells were isolated and used to characterize DCs and to quantify CMV in the blood. Plasma levels of pro-inflammatory and anti-inflammatory cytokines were also measured. RESULTS: We observed that patients who were developing CMV mononucleosis presented lower myeloid and plasmacytoid DC counts in peripheral blood compared with healthy controls. We also noted elevated levels of inflammatory mediators, of which tumor necrosis factor-α (TNF-α)-which activates DCs and endothelial cells-was the highest. Notably, the decrease in blood DCs correlated with high TNF-α and IL-8 levels by a hyperbolic function. CONCLUSIONS: Our results suggest that increased levels of inflammatory factors facilitate alterations in DC homeostasis during primary CMV infection, which may contribute to viral-induced modulation of host immunity

    CMV-associated encephalitis and antineuronal autoantibodies - a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cytomegalovirus (CMV) is an ubiquitous pathogen capable of modulating the host immune system. Immune dysfunction is common during CMV infection and includes autoimmune phenomena. Here we focus on a case of primary CMV infection associated with encephalopathy in a patient with a rudimentary spleen. We discuss diagnostic challenges and immunological aspects as well as the hypothesis that CMV may break tolerance and induce potentially encephalitogenic autoantibodies.</p> <p>Case presentation</p> <p>A 33-year-old woman was admitted with features of encephalitis, rapidly progressing into a catatonic state. The patient tested negative for presence of herpes simplex virus DNA in cerebrospinal fluid (CSF), and had elevated liver enzymes and hepatomegaly at computed tomography scan (CT) examination. CT scan and magnetic resonance imaging (MRI) showed only a rudimentary spleen. Initially, serum was negative for anti-CMV IgM, but borderline for anti-CMV IgG by enzyme-linked immunosorbent assay. However, a more sensitive assay resulted in a positive specific IgM Western blot profile and low IgG avidity, suggesting primary CMV infection. Further, CMV DNA was retrospectively detected in a CSF sample collected at admission. We also detected antineuronal autoantibodies, which stained GAD-positive neurons in the hippocampus. The patient was treated by a combination of prednisone, intravenous immunoglobulins (IVIg) and antivirals, which resulted in a dramatic amelioration of the patient’s neurological status. One year after admission the patient exhibited a nearly complete recovery with mild deficits in attention and memory.</p> <p>Conclusions</p> <p>A possible reason for the critical course of CMV infection could be the lack of a functional spleen in this patient, a condition previously associated with severe CMV infection. Prompt treatment with antiviral drugs, steroids and IVIg was most likely important for the positive outcome in this case and should be considered for similar cases of severe primary CMV infection associated with immunopathological phenomena.</p

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text

    Abstracts

    No full text

    Mesenchymal Stem Cells: The New Immunosuppressants?

    No full text
    corecore